Figure 36-18 Examples of capnograph waves. A, Normal spontaneous breathing. B, Normal mechanical ventilation. C, Prolonged exhalation during spontaneous breathing. As CO2 diffuses from the mixed venous blood into the alveoli, its concentration progressively rises (see Fig. 36-19 ). D, Increased slope of phase III in a mechanically ventilated patient with emphysema. E, Added dead space during spontaneous ventilation. F, Dual plateau (i.e. tails-up pattern) caused by a leak in the sample line.[325] The alveolar plateau is artifactually low because of dilution of exhaled gas with air leaking inward. During each mechanical breath, the leak is reduced because of higher pressure within the airway and tubing, explaining the rise in the CO2 concentration at the end of the alveolar plateau. This pattern is not seen during spontaneous ventilation because the required increase in airway pressure is absent. G, Exhausted CO2 absorbent produces an inhaled CO2 concentration greater than zero. H, Double peak for a patient with a single lung transplant. The first peak represents CO2 from the transplanted (normal) lung. CO2 exhalation from the remaining (obstructed) lung is delayed, producing the second peak. I, Inspiratory valve stuck open during spontaneous breathing. Some backflow into the inspired limb of the circuit causes a rise in the level of inspired CO2 J, Inspiratory valve stuck open during mechanical ventilation. The "slurred" downslope during inspiration represents a small amount of inspired CO2 in the inspired limb of the circuit. K and L, Expiratory valve stuck open during spontaneous breathing or mechanical ventilation. Inhalation of exhaled gas causes an increase in inspired CO2 . M, Cardiogenic oscillations, when seen, usually occur with sidestream capnographs for spontaneously breathing patients at the end of each exhalation. Cardiac action causes to-and-fro movement of the interface between exhaled and fresh gas. The CO2 concentration in gas entering the sampling line therefore alternates between high and low values. N, Electrical noise resulting from a malfunctioning component. The seemingly random nature of the signal perturbations (about three per second) implies a nonbiologic cause.


Close Figure