|
|
REFERENCES
1.
Lynch C, Baum J, Tenbrinck R: Xenon anesthesia.
Anesthesiology 92:865, 2000.
2.
Franks NP, Lieb WR: Molecular and cellular mechanisms
of general anaesthesia. Nature 367:607, 1994.
3.
Petersen-Felix S, Zbinden AM, Fischer M, et al:
Isoflurane minimum alveolar concentration decreases during anesthesia and surgery.
Anesthesiology 79:959, 1993.
4.
Firestone LL, Korpi ER, Niemi L, et al: Halothane
and desflurane requirements in alcohol-tolerant and -nontolerant rats. Br J Anaesth
85:757, 2000.
5.
Quasha AL, Eger EI II, Tinker JH: Determination
and applications of MAC. Anesthesiology 53:315, 1980.
6.
Travis CC, Bowers JC: Interspecies scaling of anesthetic
potency. Toxicol Ind Health 7:249, 1991.
7.
Deady JE, Koblin DD, Eger EI II, et al: Anesthetic
potencies and the unitary theory of narcosis. Anesth Analg 60:380, 1981.
8.
Koblin DD, Deady JE, Eger EI II: Potencies of inhaled
anesthetics and alcohol in mice selectively bred for resistance and susceptibility
to nitrous oxide anesthesia. Anesthesiology 56:18, 1982.
9.
Kissin I, Morgan PL, Smith LR: Anesthetic potencies
of isoflurane, halothane, and diethyl ether for various end points of anesthesia.
Anesthesiology 58:88, 1983.
10.
Dutton RC, Maurer AJ, Sonner JM, et al: The concentration
of isoflurane required to suppress learning depends on the type of learning. Anesthesiology
94:514, 2001.
11.
Kissin I: A concept for assessing interactions
of general anesthetics. Anesth Analg 85:204, 1997.
12.
Franks NP, Lieb WR: Temperature dependence of
the potency of volatile general anesthetics. Anesthesiology 84:716, 1996.
13.
Koblin DD, Fang Z, Eger EI II, et al: Minimum
alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats:
Helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg 87:419, 1998.
14.
Smith RA, Dodson BA, Miller KW: The interactions
between pressure and anesthetics. Philos Trans R Soc Lond B 304:69, 1984.
15.
Eger EI II: Age, minimum alveolar concentration,
and minimum alveolar concentration-awake. Anesth Analg 93:947, 2001.
16.
Tanifuji Y, Nezu T, Kobayashi K, et al: Effect
of brain calcium and magnesium on anesthetic requirement (MAC) in dogs. Jpn J Anesthesiol
29:741, 1980.
17.
Thompson SW, Moscicki JC, DiFazio CA: The anesthetic
contribution of magnesium sulfate and ritodrine hydrochloride in rats. Anesth Analg
67:31, 1988.
18.
Angel A: Central neuronal pathways and the process
of anaesthesia. Br J Anaesth 71:148, 1993.
19.
Vahle-Hinz C, Detsch O: What can in vivo electrophysiology
in animal models tell us about mechanisms of anesthesia? Br J Anaesth 89:123, 2002.
20.
MacIver MB, Roth SH: Inhalation anaesthetics exhibit
pathway-specific and differential actions on hippocampal synaptic responses in vitro.
Br J Anaesth 60:680, 1988.
21.
Banks MI, Pearce RA: Dual actions of volatile
anesthetics on GABAA
IPSCs. Dissociation of blocking and prolonging effects.
Anesthesiology 90:120, 1999.
22.
Nishikawa K, MacIver MB: Agent-selective effects
of volatile anesthetics on GABAA
receptor-mediated synaptic inhibition
in hippocampal interneurons. Anesthesiology 94:340, 2001.
23.
Ries CR, Puil E: Mechanism of anesthesia revealed
by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 81:1795,
1999.
24.
Kendig JJ: In vitro networks: Subcortical mechanisms
of anesthetic action. Br J Anaesth 89:91, 2002.
25.
Pereon Y, Beernard JC, Tich SNT, et al: The effects
of desflurane on the nervous system: From spinal cord to muscles. Anesth Analg
89:490, 1999.
26.
Borges M, Antognini JF: Does the brain influence
somatic responses to noxious stimuli during isoflurane anesthesia? Anesthesiology
81:1511, 1994.
27.
Antognini JF, Carstens E, Sudo M, et al: Isoflurane
depresses electroencephalographic and medial thalamic responses to noxious stimulation
via an indirect spinal action. Anesth Analg 91:1282, 2000.
28.
Rampil IJ, Mason P, Singh H: Anesthetic potency
(MAC) is independent of forebrain structures in the rat. Anesthesiology 78:707,
1993.
29.
Rampil IJ, Mason P, Singh H: Anesthetic potency
is not altered after hypothermic spinal cord transection in rats. Anesthesiology
80:606, 1994.
30.
Antognini JF, Schwartz K: Exaggerated anesthetic
requirements in the preferentially anesthetized brain. Anesthesiology 79:1244, 1993.
31.
Eger EI II, Koblin DD, Harris RA, et al: Hypothesis:
Inhaled anesthetics produce immobility and amnesia by different mechanisms at different
sites. Anesth Analg 84:915, 1997.
32.
MacIver MB, Tanelian DL: Volatile anesthetics
excite mammalian nociceptor afferents recorded in vitro. Anesthesiology 72:1022,
1990.
33.
Antognini JF, Kien ND: Potency (minimum alveolar
anesthetic concentration) of isoflurane is independent of peripheral anesthetic effects.
Anesth Analg 81:69, 1995.
34.
Franks NP, Lieb WR: Volatile general anaesthetics
activate a novel neuronal K+
current. Nature 333:662, 1988.
35.
Winegar BD, Owen DF, Yost CS, et al: Volatile
general anesthetics produce hyperpolarization of Aplysia
neurons by activation of a discrete population of baseline potassium channels. Anesthesiology
85:889, 1996.
36.
Evers AS, Steinbach JH: Supersensitive sites in
the central nervous system: Anesthetics block brain nicotinic receptors. Anesthesiology
86:760, 1997.
37.
Richards CD: Anaesthetic modulation of synaptic
transmission in the mammalian CNS. Br J Anaesth 89:79, 2002.
38.
Berg-Johnsen J, Langmoen IA: The effect of isoflurane
on unmyelinated and myelinated fibers in the rat brain. Acta Physiol Scand 127:87,
1986.
39.
Strichartz G: Use-dependent conduction block produced
by volatile anesthetic agents. Acta Anaesthesiol Scand 24:402, 1980.
40.
Perouansky M, Baranov D, Salman M, et al: Effects
of halothane on glutamate receptor-mediated excitatory postsynaptic currents. Anesthesiology
83:109, 1995.
41.
Griffiths R, Norman RI: Effects of anaesthetics
on uptake, synthesis and release of transmitters. Br J Anaesth 71:96, 1993.
42.
Bazil CW, Minneman KP: Clinical concentrations
of volatile anesthetics reduce depolarization-evoked release of [3
H]norepinephrine,
but not [3
H]acetylcholine, from rat cerebral cortex. J Neurochem 53:962,
1989.
43.
Keita H, Henzel-Rouelle D, Dupont H, et al: Halothane
and isoflurane increase spontaneous but reduce the N-methyl-D-aspartate-evoked
dopamine release in rat striatal slices: Evidence for direct presynaptic effects.
Anesthesiology 91:1788, 1999.
44.
Salord F, Keita H, Lecharny JB, et al: Halothane
and isoflurane differentially affect the regulation of dopamine and gamma-aminobutyric
acid release mediated by presynaptic acetylcholine receptors in the rat striatum.
Anesthesiology 86:632, 1997.
45.
Lingamaneni R, Birch ML, Hemmings HC: Widespread
inhibition of sodium channel-dependent glutamate release from isolated nerve terminals
by isoflurane and propofol. Anesthesiology 95:1460, 2001.
46.
Vinje ML, Moe MC, Valo ET, et al: The effect of
sevoflurane on glutamate release and uptake in rat cerebrocortical presynaptic terminals.
Acta Anaesthesiol Scand 46:103, 2002.
47.
Puil E, El-Beheiry H: Anaesthetic suppression
of transmitter actions in neocortex. Br J Pharmacol 101:61, 1990.
48.
de Sousa SLM, Dickinson, Lieb WR, Franks NP: Contrasting
synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology
92:105, 2000.
49.
Wakamori M, Ikemoto Y, Akaike N: Effects of two
volatile anesthetics on the excitatory and inhibitory amino acid responses in dissociated
CNS neurons of the rat. J Neurophysiol 66:2014, 1991.
50.
Yamakura T, Bertaccini E, Trudell JR, Harris RA:
Anesthetics and ion channels: Molecular models and sites of action. Annu Rev Pharmacol
Toxicol 41:23, 2001.
51.
Ngai SH, Cheney DL, Finck AD: Acetylcholine concentrations
and turnover in rat brain structures during anesthesia with halothane, enflurane,
and ketamine. Anesthesiology 48:4, 1978.
52.
Keifer JC, Baghdoyan HA, Lydic R: Pontine cholinergic
mechanisms modulate the cortical electroencephalographic spindles of halothane anesthesia.
Anesthesiology 84:945, 1996.
53.
Shichino T, Murakawa M, Adachi T, et al: Effects
of inhalation anaesthetics on the release of acetylcholine in the rat cerebral cortex
in vivo. Br J Anaesth 80:365, 1998.
54.
Ishizawa Y, Ma HC, Dohi S, et al: Effects of cholinomimetic
injection into the brain stem reticular formation on halothane anesthesia and antinociception
in rats. J Pharm Exp Ther 293:845, 2000.
55.
Eger EI, Zhang Y, Laster M, et al: Acetylcholine
receptors do not mediate the immobilization produced by inhaled anesthetics. Anesth
Analg 94:1500, 2002.
56.
Roizen MF, Kopin KJ, Thoa NB, et al: The effect
of two anesthetic agents on norepinephrine and dopamine in discrete brain nuclei,
fiber tracts, and terminal regions of the rat. Brain Res 110:515, 1976.
57.
Muldoon SM, Cress L, Freas W: Presynaptic adrenergic
effects of anesthetics. Int Anesth Clin 27:259, 1989.
58.
Segal IS, Walton JK, Irwin I, et al: Modulating
role of dopamine on anesthetic requirements. Eur J Pharmacol 186:9, 1990.
59.
Miyano K, Tanifuji Y, Eger EI II: The effect of
halothane dose on striatal dopamine: An in vivo microdialysis study. Brain Res
605:342, 1993.
60.
Vickery RG, Sheridan BC, Segal IS, et al: Anesthetic
and hemodynamic effects of the stereoisomers of medetomidine, an α2
-adrenergic
agonist, in halothane-anesthetized dogs. Anesth Analg 67:611, 1988.
61.
Kingery WS, Agashe GS, Guo TZ, et al: Isoflurane
and nociception. Spinal α2A
adrenoreceptors mediate antinociception
while supraspinal α1
adrenoreceptors mediate pronociception. Anesthesiology
96:367, 2002.
62.
Roizen MF, Kopin IJ, Palkovits M, et al: The effect
of two diverse inhalation anesthetic agents on serotonin in discrete regions of the
rat brain. Exp Brain Res 24:203, 1975.
63.
Rampil IJ, Laster MJ, Eger EI II: Antagonism of
the 5-HT3
receptor does not alter isoflurane MAC in rats. Anesthesiology
95:562, 2001.
64.
Seitz PA, Riet MT, Rush W, et al: Adenosine decreases
the minimum alveolar concentration of halothane in dogs. Anesthesiology 73:990,
1990.
65.
Suzuki A, Katoh T, Ikeda K: The effect of adenosine
triphosphate on sevoflurane requirements for minimum alveolar anesthetic concentrations
and minimum alveolar anesthetic-awake. Anesth Analg 86:179, 1998.
66.
Eisenach JC, Hood DD, Curry R: Preliminary efficacy
assessment of intrathecal injection of an American formulation of adenosine in humans.
Anesthesiology 96:29, 2002.
67.
Arai T, Aoki M, Murakawa M, et al: The effects
of halothane on the contents of putative transmitter amino acids in whole rat brain.
Neurosci Lett 117:353, 1990.
68.
Cheng SC, Brunner EA: Inhibition of GABA metabolism
in rat brain slices by halothane. Anesthesiology 55:26, 1981.
69.
Vahle-Hinz C, Detsch O, Siemers M, et al: Local
GABAA
receptor blockade reverses isoflurane's suppressive effects on thalamic
neurons in vivo. Anesth Analg 92:1578, 2001.
70.
Zhang Y, Stabernack C, Sonner J, et al: Both cerebral
GABAA
receptors and spinal GABAA
receptors modulate the capacity
of isoflurane to produce immobility. Anesth Analg 92:1585, 2001.
71.
Zhang Y, Wu S, Eger EI II, Sonner J, et al: Neither
GABAA
nor strychnine-sensitive glycine receptors are the sole mediators
of MAC for isoflurane. Anesth Analg 92:123, 2001.
72.
Hudspith MJ: Glutamate: A role in normal brain
function, anaesthesia, analgesia and CNS injury. Br J Anaesth 78:731, 1997.
73.
Nishikawa K, MacIver BM: Excitatory synaptic transmission
mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor-mediated
responses. Anesthesiology 92:228, 2000.
74.
Towler SC, Evers AS: Anesthesia and chemical second
messenger generation in the adrenergic nervous system. Int Anesth Clin 27:234, 1989.
75.
Rengasamy A, Pajewski TN, Johns RA: Inhalational
anesthetic effects on rat cerebellar nitric oxide and cyclic guanosine monophosphate
production. Anesthesiology 86:689, 1997.
76.
Kress HG, Tas WL: Effects of volatile anaesthetics
on second messenger Ca+2
in neurones and non-muscular cells. Br J Anaesth
71:47, 1993.
77.
Mody I, Tanelian DL, MacIver MB: Halothane enhances
tonic neuronal inhibition by elevating intracellular calcium. Brain Res 538:319,
1991.
78.
Hossain MD, Evers AS: Volatile-anesthetic-induced
efflux of calcium from IP3
-gated stores in clonal (GH3
) pituitary
cells. Anesthesiology 80:1379, 1994.
79.
Kraynack BJ, Gintautas JG: Naloxone: Analeptic
action unrelated to opiate receptor antagonism? Anesthesiology 56:251, 1982.
80.
Finck AD, Samaniego E, Ngai SH: Nitrous oxide
selectively releases Met5
-enkephalin and Met5
-enkephalin-Arg6
-Phe7
into canine third ventricle cerebral spinal fluid. Anesth Analg 80:664, 1995.
81.
Mantz J, Azerad J, Limoge A, et al: Transcranial
electrical stimulation with Limoge's currents decreases halothane requirements in
rats: Evidence for the involvement of endogenous opioids. Anesthesiology 76:253,
1992.
82.
Way WL, Hosobuchi Y, Johnson BH, et al: Anesthesia
does not increase opioid peptides in cerebrospinal fluid of humans. Anesthesiology
60:43, 1984.
83.
Sjostrom S, Tamsen A, Hartvig P, et al: Cerebrospinal
fluid concentrations of substance P and metenkephalin-Arg6-Phe7 during surgery and
patient-controlled analgesia. Anesth Analg 67:976, 1988.
84.
Ichinose F, Huang PL, Zapol WM: Effects of targeted
neuronal nitric oxide synthase gene disruption and nitroG
-L-arginine
methylester on the threshold for isoflurane anesthesia. Anesthesiology 83:101, 1995.
85.
Pajewski TN, DiFazio CA, Moscicki JC, et al: Nitric
oxide synthase inhibitors, 7-nitro indazole and nitroG
-L-arginine
methyl ester, dose-dependently reduce the threshold for isoflurane anesthesia. Anesthesiology
85:1111, 1996.
86.
Ichinose F, Mi W, Miyazaki M, et al: Lack of correlation
between the reduction of sevoflurane MAC and the cerebellar cyclic GMP concentrations
in mice treated with 7-nitroindazole. Anesthesiology 89:143, 1998.
87.
Seeman P: The membrane actions of anesthetics
and tranquilizers. Pharmacol Rev 24:583, 1972.
88.
Miller KW: The nature of the site of general anaesthesia.
Int Rev Neurobiol 27:1, 1985.
89.
Franks NP, Lieb WR: What is the molecular nature
of general anesthetic target sites? Trends Pharmacol Sci 8:169, 1987.
90.
Taheri S, Halsey MJ, Liu J, et al: What solvent
best represents the site of action of inhaled anesthetics in humans, rats, and dogs?
Anesth Analg 72:627, 1991.
91.
Eger EI II: Does 1 + 1 = 2? Anesth Analg 68:551,
1989.
92.
Dickinson R, White I, Lieb WR, Franks NP: Stereoselective
loss of righting reflex in rats by isoflurane. Anesthesiology 93:837, 2000.
93.
Rudo FG, Krantz JC: Anaesthetic molecules. Br
J Anaesth 46:181, 1974.
94.
Koblin DD, Eger EI II, Johnson BH, et al: Are
convulsant gases also anesthetics? Anesth Analg 60:464, 1981.
95.
Koblin DD, Eger EI II, Johnson BH, et al: Minimum
alveolar concentrations and oil/gas partition coefficients of four anesthetic isomers.
Anesthesiology 54:314, 1981.
96.
Krasowski MD: Differential modulatory actions
of the volatile convulsant flurothyl and its anesthetic isomer at inhibitory ligand-gated
ion channels. Neuropharmacology 39:1168, 2000.
97.
Raines DE, Miller KW: On the importance of volatile
agents devoid of anesthetic action. Anesth Analg 79:1031, 1994.
98.
Liu J, Laster MJ, Taheri S, et al: Is there a
cutoff in anesthetic potency for the normal alkanes? Anesth Analg 77:12, 1993.
99.
Liu J, Laster MJ, Koblin DD, et al: A cutoff in
anesthetic potency exists in the perfluoroalkanes. Anesth Analg 79:238, 1994.
100.
Koblin DD, Chortkoff BS, Laster MJ, et al: Polyhalogenated
and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg
79:1043, 1994.
101.
Fang Z, Sonner J, Laster MJ, et al: Anesthetic
and convulsant properties of aromatic compounds and cycloalkanes: Implications for
mechanisms of narcosis. Anesth Analg 83:1097, 1996.
102.
Koblin DD, Laster MJ, Ionescu P, et al: Polyhalogenated
methyl ethyl ethers: Solubilities and anesthetic properties. Anesth Analg 88:1161,
1999.
103.
Fang Z, Laster MJ, Gong D, et al: Convulsant
activity of nonanesthetic gas combinations. Anesth Analg 84:634, 1997.
104.
Dutton RC, Maurer AJ, Sonner JM, et al: Short-term
memory resists the depressant effect of the nonimmobilizer 1-2-dichlorohexafluorocyclobutane
(2N) more than long-term memory. Anesth Analg 94:631, 2002.
105.
Borghese CM, Harris RA: Anesthetic-induced immobility:
Neuronal nicotinic acetylcholine receptors are no longer in the picture. Anesth
Analg 95:509, 2002.
106.
Pauling L: A molecular theory of general anesthesia.
Science 134:15, 1961.
107.
Abraham MH, Lieb WR, Franks NP: Role of hydrogen
bonding in general anesthesia. J Pharm Sci 80:719, 1991.
108.
Vulliemoz Y, Triner L, Verosky M, et al: Deuterated
halothane—Anesthetic potency, anticonvulsant activity, and effect on cerebellar
cyclic guanosine 3',5'-monophosphate. Anesth Analg 63:495, 1984.
109.
Miller KW: Inert gas narcosis, the high pressure
neurological syndrome, and the critical volume hypothesis. Science 185:867, 1974.
110.
Ratnakumari L, Vysotskaya TN, Duch DS, et al:
Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated
sodium channels. Anesthesiology 92:529, 2000.
111.
Friederich P, Benzenberg D, Trellakis, et al:
Interaction of volatile anesthetics with human Kv
channels in relation to clinical concentrations. Anesthesiology 95:954, 2001.
112.
Brett RS, Dilger JP, Yland KF: Isoflurane causes
"flickering" of the acetylcholine receptor channel: Observations using the patch
clamp. Anesthesiology 69:161, 1988.
113.
Dilger JP, Vidal AM, Mody HI: Evidence for direct
actions of general anesthetics on an ion channel protein. Anesthesiology 81:431,
1994.
114.
Tanelian DL, Kosek P, Mody I, MacIver MB: The
role of the GABAA
receptor/chloride channel complex in anesthesia. Anesthesiology
78:757, 1993.
115.
Patel AJ, Honore E: Anesthetic-sensitive 2P domain
K+
channels. Anesthesiology 95:1013, 2001.
116.
MacIver MB, Kendig JJ: Anesthetic effects on
membrane resting potential are voltage-dependent and agent-specific. Anesthesiology
74:83, 1991.
117.
Janoff AS, Miller KW: A critical assessment of
the lipid theories of general anesthetic action. In
Chapman D (ed): Biological Membranes. London, Academic Press, 1982, pp 417–476.
118.
Tang P, Yan B, Xu Y: Different distribution of
fluorinated anesthetics and nonanesthetics in model membrane: A 19
F NMR
study. Biophys J 72:1676, 1997.
119.
North C, Cafiso DS: Contrasting membrane localization
and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton
hypothesis of general anesthetic potency. Biophys J 72:1754, 1997.
120.
Johansson JS, Zou H: Nonanesthetics (nonimmobilizers)
and anesthetics display different microenvironment preferences. Anesthesiology 95:558,
2001.
121.
Raines DE, Cafiso DS: The enhancement of proton/hydroxyl
flow across lipid vesicles by inhalation anesthetics. Anesthesiology 70:57, 1989.
122.
Franks NP, Lieb WR: Is membrane expansion relevant
to anaesthesia? Nature 292:248, 1981.
123.
Harris RA, Groh GI: Membrane disordering effects
of anesthetics are enhanced by gangliosides. Anesthesiology 62:115, 1985.
124.
Mihic J, McQuilkin SJ, Eger EI II, et al: Potentiation
of γ-aminobutyric acid type A receptor-mediated chloride currents by novel
halogenated compounds correlates with their abilities to induce general anesthesia.
Mol Pharmacol 46:851, 1994.
125.
Qin Z, Szabo G, Cafiso DS: Anesthetics reduce
the magnitude of the membrane dipole potential: Measurements in lipid vesicles using
voltage-sensitive spin probes. Biochemistry 34:5536, 1995.
126.
Cantor RS: Breaking the Meyer-Overton rule:
Predicted effects of varying stiffness and interfacial activity on the intrinsic
potency of anesthetics. Biophys J 80:2284, 2001.
127.
Eckenhoff RG, Johansson JS: Molecular interactions
between inhaled anesthetics and proteins. Pharmacol Rev 49:343, 1997.
128.
Miller KW: The nature of sites of general anaesthetic
action. Br J Anaesth 89:17, 2002.
129.
Bhattacharya AA, Curry S, Franks NP: Binding
of the general anesthetics propofol and halothane to human serum albumin. J Biol
Chem 275:38731, 2000.
130.
Dickinson R, Franks NP, Lieb WR: Thermodynamics
of anesthetic/protein interactions: Temperature studies on firefly luciferase.
Biophys J 64:1264, 1993.
131.
Zhang Y, Stabernack CR, Dutton R, et al: Luciferase
as a model for the site of inhaled anesthetic action. Anesth Analg 93:1246, 2001.
132.
Eckenhoff RG: An inhalational anesthetic binding
domain in the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 93:2807,
1996.
133.
Raines DE, Zachariah VT: Isoflurane increases
the apparent agonist affinity of the nicotinic acetylcholine receptor by reducing
the microscopic agonist dissociation constant. Anesthesiology 92:775, 2000.
134.
Raines DE, Claycomb RJ, Scheller M, Forman SA:
Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated
ion channels. Anesthesiology 95:470, 2001.
135.
Dilger JP: The effects of general anaesthetics
on ligand-gated ion channels. Br J Anaesth 89:41, 2002.
136.
Flood P, Ramirez-Latorre J, Role L: α4β2
Neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited
by isoflurane and propofol, but α7-type nicotinic acetylcholine receptors are
unaffected. Anesthesiology 86:859, 1997.
137.
Downie DL, Vicente-Agullo F, Campos-Caro A, et
al: Determinants of the anesthetic sensitivity of neuronal nicotinic acetylcholine
receptors. J Biol Chem 277:10367, 2002.
138.
Harris BD, Wong G, Moody EJ, et al: Different
subunit requirements for volatile and nonvolatile anesthetics at γ-aminobutyric
acid type A receptors. Mol Pharmacol 47:363, 1995.
139.
Scheller M, Forman SA: The γ subunit determines
whether anesthetic-induced leftward shift is altered by a mutation at α1
S270
in α1
β2
γ2L
GABAA
receptors.
Anesthesiology 95:123, 2001.
140.
Krasowski MD, Harrison NL: The actions of ether,
alcohol and alkane general anaesthetics on GABAA
and glycine receptors
and the effects of TM2 and TM3 mutations. Br J Pharmacol 129:731, 2000.
141.
Jenkins A, Greenblatt EP, Faulkner HJ, et al:
Evidence for a common binding cavity for three general anesthetics within the GABAA
receptor. J Neurosci 21:RC316, 2001.
142.
Suzuki T, Koyama H, Sugimoto M, et al: The diverse
actions of volatile and gaseous anesthetics on human-cloned 5-hydroxytryptamine3
receptors expressed in Xenopus oocytes. Anesthesiology
96:699, 2002.
143.
Minami K, Wick MJ, Stern-bach Y, et al: Sites
of volatile anesthetic action on kainate (glutamate receptor 6) receptors. J Biol
Chem 273:8248, 1998.
144.
Jevtovic-Todorovic V, Todorovic SM, Mennerick
S, et al: Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and
neurotoxin. Nat Med 4:460, 1998.
145.
Yamakura T, Harris RA: Effects of gaseous anesthetics
nitrous oxide and xenon on ligand-gated ion channels: Comparison with isoflurane
and ethanol. Anesthesiology 93:1095, 2000.
146.
Raines DE, Claycomb RJ, Forman SA: Nonhalogenated
anesthetic alkanes and perhalogenated nonimmobilizing alkanes inhibit α4β2
neuronal nicotinic acetylcholine receptors. Anesth Analg 94:573, 2002.
147.
Yamakura T, Lewohl JM, Harris RA: Differential
effects of general anesthetics on G protein-coupled inwardly rectifying and other
potassium channels. Anesthesiology 95:144, 2001.
148.
Todorovic SM, Jevtovic-Todorovic V, Mennerick
S, et al: Cav
3,2 channel is a molecular substrate for inhibition of T-type
calcium currents in rat sensory neurons by nitrous oxide. Mol Pharmacol 60:603,
2001.
149.
Gray AT, Zhao BB, Kindler CH, et al: Volatile
anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology
92:1722, 2000.
150.
Durieux ME: Muscarinic signaling in the central
nervous system: Recent developments and anesthetic implications. Anesthesiology
84:173, 1996.
151.
Minami K, Minami M, Harris RA: Inhibition of
5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics.
J Pharm Exp Ther 281:1136, 1997.
152.
Minami K, Gereau RW IV, Minami M, et al: Effects
of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed
in Xenopus laevis oocytes. Mol Pharmacol 53:148,
1998.
153.
Rebecchi MJ, Pentyala SN: Anaesthetic actions
on other targets: Protein kinase C and guanine nucleotide-binding proteins. Br
J Anaesth 89:62, 2002.
154.
Ishizawa Y, Sharp R, Liebman PA, et al: Halothane
binding to a G protein coupled receptor in retinal membranes by photoaffinity labeling.
Biochemistry 39:8497, 2000.
155.
Hemmings HC, Adamo AIB: Effect of halothane on
conventional protein kinase C translocation and down-regulation in rat cerebrocortical
synaptosomes. Br J Anaesth 78:189, 1997.
156.
Minami K, Shiraishi M, Uezono Y, et al: The inhibitory
effects of anesthetics and ethanol on substance P receptors expressed in Xenopus
oocytes. Anesth Analg 94:79, 2002.
157.
Patel MK, Mistry D, John JE III, et al: Sodium
channel isoform-specific effects of halothane: Protein kinase C co-expression and
slow inactivation gating. Br J Pharmacol 130:785, 2000.
158.
Koblin DD, Dong DE, Deady JE, et al: Alteration
of synaptic membrane fatty acid composition and anesthetic requirement. J Pharmacol
Exp Ther 212:546, 1980.
159.
Evers AS, Elliott WJ, Lefkowith JB, et al: Manipulation
of rat brain fatty acid composition alters volatile anesthetic potency. J Clin Invest
77:1028, 1986.
160.
Koblin DD, Dong DE, Eger EI II: Tolerance of
mice to nitrous oxide. J Pharmacol Exp Ther 211:317, 1979.
161.
Koblin DD, Eger EI II, Smith RA, et al: Chronic
exposure of mice to subanesthetic doses of nitrous oxide. In
Fink BR (ed): Progress in Anesthesiology, vol 2. Molecular Mechanisms of Anesthesia.
New York, Raven Press, 1980, pp 157–164.
162.
Ngai SH, Finck AD: Prolonged exposure to nitrous
oxide decreases opiate receptor density in rat brainstem. Anesthesiology 57:26,
1982.
163.
Ramsay DS, Brown AC, Woods SC: Acute tolerance
to nitrous oxide in humans. Pain 51:367, 1992.
164.
Smith RA, Winter PM, Smith M, et al: Rapidly
developing tolerance to acute exposures to anesthetic agents. Anesthesiology 50:496,
1979.
165.
Fender C, Fujinaga M, Maze M: Strain differences
in the antinociceptive effect of nitrous oxide on the tail flick test in rats. Anesth
Analg 90:195, 2000.
166.
Nash HA: In vivo genetics of anaesthetic action.
Br J Anaesth 89:143, 2002.
167.
Humphrey JA, Sedensky MM, Morgan PG: Understanding
anesthesia: Making genetic sense of the absence of senses. Hum Mol Genet 11:1241,
2002.
168.
van Swinderen B, Metz LB, Shebester LD, et al:
Goα regulates volatile anesthetic action in Caenorhabditis
elegans. Genetics 148:643, 2001.
169.
Morgan PG, Radke GW, Sedensky MM: Effects of
nonimmobilizers and halothane on Caenorhabditis elegans.
Anesth Analg 91:1007, 2000.
170.
Gamo S, Ogaki M, Nakashima-Tanaka E: Strain differences
in minimum anesthetic concentrations in Drosophila melanogaster.
Anesthesiology 54:289, 1981.
171.
Campbell DB, Nash HA: Use of Drosophila
mutants to distinguish among volatile anesthetics. Proc Natl Acad Sci U S A 91:2135,
1994.
172.
Walcourt A, Scott RL, Nash HA: Blockage of one
class of potassium channel alters the effectiveness of halothane in a brain circuit
of Drosophila. Anesth Analg 92:535, 2001.
173.
Sonner J, Gong D, Eger EI II: Naturally occurring
variability in anesthetic potency among inbred mouse strains. Anesth Analg 91:720,
2000.
174.
Koblin DD, Dong DE, Deady JE, et al: Selective
breeding alters murine resistance to nitrous oxide without alteration in synaptic
membrane lipid composition. Anesthesiology 52:401, 1980.
175.
Roizen MF, Koblin DD, Johnson BH, et al: Mechanism
of age-related and nitrous oxide-associated anesthetic sensitivity: The role of
brain catecholamines. Anesthesiology 69:716, 1988.
176.
Sonner J, Gong D, Li J, et al: Mouse strain modestly
influences minimum alveolar anesthetic concentration and convulsivity of inhaled
compounds. Anesth Analg 89:1030, 1999.
177.
Dahan A, Sarton E, Teppema L, et al: Anesthetic
potency and influence of morphine and sevoflurane on respiration in μ-opioid receptor
knockout mice. Anesthesiology 94:824, 2001.
178.
Joo DT, Gong D, Sonner JM, et al: Blockade of
AMPA receptors and volatile anesthetics: Reduced anesthetic requirements in GluR2
null mutant mice for loss of the righting reflex and antinociception but not minimum
alveolar concentration. Anesthesiology 94:478, 2001.
179.
Quinlan JJ, Ferguson C, Jester K, et al: Mice
with glycine receptor subunit mutations are both sensitive and resistant to volatile
anesthetics. Anesth Analg 95:578, 2002.
180.
Homanics GE, Ferguson C, Quinlan JJ, et al: Gene
knockout of the α6 subunit of the γ-aminobutyric acid type A receptor:
Lack of effect on responses to ethanol, pentobarbital, and general anesthetics.
Mol Pharmacol 51:588, 1997.
181.
Quinlan JJ, Homanics GE, Firestone LL: Anesthesia
sensitivity in mice that lack the β3 subunit of the γ-aminobutyric acid
type A receptor. Anesthesiology 88:775, 1998.
182.
Wong SME, Cheng G, Homanics GE, et al: Enflurane
actions on spinal cords from mice that lack the β3 subunit of the GABAA
receptor. Anesthesiology 95:154, 2001.