Previous Next



REFERENCES

1. Lynch C, Baum J, Tenbrinck R: Xenon anesthesia. Anesthesiology 92:865, 2000.

2. Franks NP, Lieb WR: Molecular and cellular mechanisms of general anaesthesia. Nature 367:607, 1994.

3. Petersen-Felix S, Zbinden AM, Fischer M, et al: Isoflurane minimum alveolar concentration decreases during anesthesia and surgery. Anesthesiology 79:959, 1993.

4. Firestone LL, Korpi ER, Niemi L, et al: Halothane and desflurane requirements in alcohol-tolerant and -nontolerant rats. Br J Anaesth 85:757, 2000.

5. Quasha AL, Eger EI II, Tinker JH: Determination and applications of MAC. Anesthesiology 53:315, 1980.

6. Travis CC, Bowers JC: Interspecies scaling of anesthetic potency. Toxicol Ind Health 7:249, 1991.

7. Deady JE, Koblin DD, Eger EI II, et al: Anesthetic potencies and the unitary theory of narcosis. Anesth Analg 60:380, 1981.

8. Koblin DD, Deady JE, Eger EI II: Potencies of inhaled anesthetics and alcohol in mice selectively bred for resistance and susceptibility to nitrous oxide anesthesia. Anesthesiology 56:18, 1982.

9. Kissin I, Morgan PL, Smith LR: Anesthetic potencies of isoflurane, halothane, and diethyl ether for various end points of anesthesia. Anesthesiology 58:88, 1983.

10. Dutton RC, Maurer AJ, Sonner JM, et al: The concentration of isoflurane required to suppress learning depends on the type of learning. Anesthesiology 94:514, 2001.

11. Kissin I: A concept for assessing interactions of general anesthetics. Anesth Analg 85:204, 1997.

12. Franks NP, Lieb WR: Temperature dependence of the potency of volatile general anesthetics. Anesthesiology 84:716, 1996.

13. Koblin DD, Fang Z, Eger EI II, et al: Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: Helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg 87:419, 1998.

14. Smith RA, Dodson BA, Miller KW: The interactions between pressure and anesthetics. Philos Trans R Soc Lond B 304:69, 1984.

15. Eger EI II: Age, minimum alveolar concentration, and minimum alveolar concentration-awake. Anesth Analg 93:947, 2001.

16. Tanifuji Y, Nezu T, Kobayashi K, et al: Effect of brain calcium and magnesium on anesthetic requirement (MAC) in dogs. Jpn J Anesthesiol 29:741, 1980.

17. Thompson SW, Moscicki JC, DiFazio CA: The anesthetic contribution of magnesium sulfate and ritodrine hydrochloride in rats. Anesth Analg 67:31, 1988.

18. Angel A: Central neuronal pathways and the process of anaesthesia. Br J Anaesth 71:148, 1993.

19. Vahle-Hinz C, Detsch O: What can in vivo electrophysiology in animal models tell us about mechanisms of anesthesia? Br J Anaesth 89:123, 2002.

20. MacIver MB, Roth SH: Inhalation anaesthetics exhibit pathway-specific and differential actions on hippocampal synaptic responses in vitro. Br J Anaesth 60:680, 1988.

21. Banks MI, Pearce RA: Dual actions of volatile anesthetics on GABAA IPSCs. Dissociation of blocking and prolonging effects. Anesthesiology 90:120, 1999.

22. Nishikawa K, MacIver MB: Agent-selective effects of volatile anesthetics on GABAA receptor-mediated synaptic inhibition in hippocampal interneurons. Anesthesiology 94:340, 2001.

23. Ries CR, Puil E: Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 81:1795, 1999.

24. Kendig JJ: In vitro networks: Subcortical mechanisms of anesthetic action. Br J Anaesth 89:91, 2002.

25. Pereon Y, Beernard JC, Tich SNT, et al: The effects of desflurane on the nervous system: From spinal cord to muscles. Anesth Analg 89:490, 1999.

26. Borges M, Antognini JF: Does the brain influence somatic responses to noxious stimuli during isoflurane anesthesia? Anesthesiology 81:1511, 1994.

27. Antognini JF, Carstens E, Sudo M, et al: Isoflurane depresses electroencephalographic and medial thalamic responses to noxious stimulation via an indirect spinal action. Anesth Analg 91:1282, 2000.

28. Rampil IJ, Mason P, Singh H: Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78:707, 1993.

29. Rampil IJ, Mason P, Singh H: Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 80:606, 1994.


127


30. Antognini JF, Schwartz K: Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79:1244, 1993.

31. Eger EI II, Koblin DD, Harris RA, et al: Hypothesis: Inhaled anesthetics produce immobility and amnesia by different mechanisms at different sites. Anesth Analg 84:915, 1997.

32. MacIver MB, Tanelian DL: Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro. Anesthesiology 72:1022, 1990.

33. Antognini JF, Kien ND: Potency (minimum alveolar anesthetic concentration) of isoflurane is independent of peripheral anesthetic effects. Anesth Analg 81:69, 1995.

34. Franks NP, Lieb WR: Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333:662, 1988.

35. Winegar BD, Owen DF, Yost CS, et al: Volatile general anesthetics produce hyperpolarization of Aplysia neurons by activation of a discrete population of baseline potassium channels. Anesthesiology 85:889, 1996.

36. Evers AS, Steinbach JH: Supersensitive sites in the central nervous system: Anesthetics block brain nicotinic receptors. Anesthesiology 86:760, 1997.

37. Richards CD: Anaesthetic modulation of synaptic transmission in the mammalian CNS. Br J Anaesth 89:79, 2002.

38. Berg-Johnsen J, Langmoen IA: The effect of isoflurane on unmyelinated and myelinated fibers in the rat brain. Acta Physiol Scand 127:87, 1986.

39. Strichartz G: Use-dependent conduction block produced by volatile anesthetic agents. Acta Anaesthesiol Scand 24:402, 1980.

40. Perouansky M, Baranov D, Salman M, et al: Effects of halothane on glutamate receptor-mediated excitatory postsynaptic currents. Anesthesiology 83:109, 1995.

41. Griffiths R, Norman RI: Effects of anaesthetics on uptake, synthesis and release of transmitters. Br J Anaesth 71:96, 1993.

42. Bazil CW, Minneman KP: Clinical concentrations of volatile anesthetics reduce depolarization-evoked release of [3 H]norepinephrine, but not [3 H]acetylcholine, from rat cerebral cortex. J Neurochem 53:962, 1989.

43. Keita H, Henzel-Rouelle D, Dupont H, et al: Halothane and isoflurane increase spontaneous but reduce the N-methyl-D-aspartate-evoked dopamine release in rat striatal slices: Evidence for direct presynaptic effects. Anesthesiology 91:1788, 1999.

44. Salord F, Keita H, Lecharny JB, et al: Halothane and isoflurane differentially affect the regulation of dopamine and gamma-aminobutyric acid release mediated by presynaptic acetylcholine receptors in the rat striatum. Anesthesiology 86:632, 1997.

45. Lingamaneni R, Birch ML, Hemmings HC: Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol. Anesthesiology 95:1460, 2001.

46. Vinje ML, Moe MC, Valo ET, et al: The effect of sevoflurane on glutamate release and uptake in rat cerebrocortical presynaptic terminals. Acta Anaesthesiol Scand 46:103, 2002.

47. Puil E, El-Beheiry H: Anaesthetic suppression of transmitter actions in neocortex. Br J Pharmacol 101:61, 1990.

48. de Sousa SLM, Dickinson, Lieb WR, Franks NP: Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 92:105, 2000.

49. Wakamori M, Ikemoto Y, Akaike N: Effects of two volatile anesthetics on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. J Neurophysiol 66:2014, 1991.

50. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: Molecular models and sites of action. Annu Rev Pharmacol Toxicol 41:23, 2001.

51. Ngai SH, Cheney DL, Finck AD: Acetylcholine concentrations and turnover in rat brain structures during anesthesia with halothane, enflurane, and ketamine. Anesthesiology 48:4, 1978.

52. Keifer JC, Baghdoyan HA, Lydic R: Pontine cholinergic mechanisms modulate the cortical electroencephalographic spindles of halothane anesthesia. Anesthesiology 84:945, 1996.

53. Shichino T, Murakawa M, Adachi T, et al: Effects of inhalation anaesthetics on the release of acetylcholine in the rat cerebral cortex in vivo. Br J Anaesth 80:365, 1998.

54. Ishizawa Y, Ma HC, Dohi S, et al: Effects of cholinomimetic injection into the brain stem reticular formation on halothane anesthesia and antinociception in rats. J Pharm Exp Ther 293:845, 2000.

55. Eger EI, Zhang Y, Laster M, et al: Acetylcholine receptors do not mediate the immobilization produced by inhaled anesthetics. Anesth Analg 94:1500, 2002.

56. Roizen MF, Kopin KJ, Thoa NB, et al: The effect of two anesthetic agents on norepinephrine and dopamine in discrete brain nuclei, fiber tracts, and terminal regions of the rat. Brain Res 110:515, 1976.

57. Muldoon SM, Cress L, Freas W: Presynaptic adrenergic effects of anesthetics. Int Anesth Clin 27:259, 1989.

58. Segal IS, Walton JK, Irwin I, et al: Modulating role of dopamine on anesthetic requirements. Eur J Pharmacol 186:9, 1990.

59. Miyano K, Tanifuji Y, Eger EI II: The effect of halothane dose on striatal dopamine: An in vivo microdialysis study. Brain Res 605:342, 1993.

60. Vickery RG, Sheridan BC, Segal IS, et al: Anesthetic and hemodynamic effects of the stereoisomers of medetomidine, an α2 -adrenergic agonist, in halothane-anesthetized dogs. Anesth Analg 67:611, 1988.

61. Kingery WS, Agashe GS, Guo TZ, et al: Isoflurane and nociception. Spinal α2A adrenoreceptors mediate antinociception while supraspinal α1 adrenoreceptors mediate pronociception. Anesthesiology 96:367, 2002.

62. Roizen MF, Kopin IJ, Palkovits M, et al: The effect of two diverse inhalation anesthetic agents on serotonin in discrete regions of the rat brain. Exp Brain Res 24:203, 1975.

63. Rampil IJ, Laster MJ, Eger EI II: Antagonism of the 5-HT3 receptor does not alter isoflurane MAC in rats. Anesthesiology 95:562, 2001.

64. Seitz PA, Riet MT, Rush W, et al: Adenosine decreases the minimum alveolar concentration of halothane in dogs. Anesthesiology 73:990, 1990.

65. Suzuki A, Katoh T, Ikeda K: The effect of adenosine triphosphate on sevoflurane requirements for minimum alveolar anesthetic concentrations and minimum alveolar anesthetic-awake. Anesth Analg 86:179, 1998.

66. Eisenach JC, Hood DD, Curry R: Preliminary efficacy assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology 96:29, 2002.

67. Arai T, Aoki M, Murakawa M, et al: The effects of halothane on the contents of putative transmitter amino acids in whole rat brain. Neurosci Lett 117:353, 1990.

68. Cheng SC, Brunner EA: Inhibition of GABA metabolism in rat brain slices by halothane. Anesthesiology 55:26, 1981.

69. Vahle-Hinz C, Detsch O, Siemers M, et al: Local GABAA receptor blockade reverses isoflurane's suppressive effects on thalamic neurons in vivo. Anesth Analg 92:1578, 2001.

70. Zhang Y, Stabernack C, Sonner J, et al: Both cerebral GABAA receptors and spinal GABAA receptors modulate the capacity of isoflurane to produce immobility. Anesth Analg 92:1585, 2001.

71. Zhang Y, Wu S, Eger EI II, Sonner J, et al: Neither GABAA nor strychnine-sensitive glycine receptors are the sole mediators of MAC for isoflurane. Anesth Analg 92:123, 2001.

72. Hudspith MJ: Glutamate: A role in normal brain function, anaesthesia, analgesia and CNS injury. Br J Anaesth 78:731, 1997.

73. Nishikawa K, MacIver BM: Excitatory synaptic transmission mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor-mediated responses. Anesthesiology 92:228, 2000.

74. Towler SC, Evers AS: Anesthesia and chemical second messenger generation in the adrenergic nervous system. Int Anesth Clin 27:234, 1989.

75. Rengasamy A, Pajewski TN, Johns RA: Inhalational anesthetic effects on rat cerebellar nitric oxide and cyclic guanosine monophosphate production. Anesthesiology 86:689, 1997.
128


76. Kress HG, Tas WL: Effects of volatile anaesthetics on second messenger Ca+2 in neurones and non-muscular cells. Br J Anaesth 71:47, 1993.

77. Mody I, Tanelian DL, MacIver MB: Halothane enhances tonic neuronal inhibition by elevating intracellular calcium. Brain Res 538:319, 1991.

78. Hossain MD, Evers AS: Volatile-anesthetic-induced efflux of calcium from IP3 -gated stores in clonal (GH3 ) pituitary cells. Anesthesiology 80:1379, 1994.

79. Kraynack BJ, Gintautas JG: Naloxone: Analeptic action unrelated to opiate receptor antagonism? Anesthesiology 56:251, 1982.

80. Finck AD, Samaniego E, Ngai SH: Nitrous oxide selectively releases Met5 -enkephalin and Met5 -enkephalin-Arg6 -Phe7 into canine third ventricle cerebral spinal fluid. Anesth Analg 80:664, 1995.

81. Mantz J, Azerad J, Limoge A, et al: Transcranial electrical stimulation with Limoge's currents decreases halothane requirements in rats: Evidence for the involvement of endogenous opioids. Anesthesiology 76:253, 1992.

82. Way WL, Hosobuchi Y, Johnson BH, et al: Anesthesia does not increase opioid peptides in cerebrospinal fluid of humans. Anesthesiology 60:43, 1984.

83. Sjostrom S, Tamsen A, Hartvig P, et al: Cerebrospinal fluid concentrations of substance P and metenkephalin-Arg6-Phe7 during surgery and patient-controlled analgesia. Anesth Analg 67:976, 1988.

84. Ichinose F, Huang PL, Zapol WM: Effects of targeted neuronal nitric oxide synthase gene disruption and nitroG -L-arginine methylester on the threshold for isoflurane anesthesia. Anesthesiology 83:101, 1995.

85. Pajewski TN, DiFazio CA, Moscicki JC, et al: Nitric oxide synthase inhibitors, 7-nitro indazole and nitroG -L-arginine methyl ester, dose-dependently reduce the threshold for isoflurane anesthesia. Anesthesiology 85:1111, 1996.

86. Ichinose F, Mi W, Miyazaki M, et al: Lack of correlation between the reduction of sevoflurane MAC and the cerebellar cyclic GMP concentrations in mice treated with 7-nitroindazole. Anesthesiology 89:143, 1998.

87. Seeman P: The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583, 1972.

88. Miller KW: The nature of the site of general anaesthesia. Int Rev Neurobiol 27:1, 1985.

89. Franks NP, Lieb WR: What is the molecular nature of general anesthetic target sites? Trends Pharmacol Sci 8:169, 1987.

90. Taheri S, Halsey MJ, Liu J, et al: What solvent best represents the site of action of inhaled anesthetics in humans, rats, and dogs? Anesth Analg 72:627, 1991.

91. Eger EI II: Does 1 + 1 = 2? Anesth Analg 68:551, 1989.

92. Dickinson R, White I, Lieb WR, Franks NP: Stereoselective loss of righting reflex in rats by isoflurane. Anesthesiology 93:837, 2000.

93. Rudo FG, Krantz JC: Anaesthetic molecules. Br J Anaesth 46:181, 1974.

94. Koblin DD, Eger EI II, Johnson BH, et al: Are convulsant gases also anesthetics? Anesth Analg 60:464, 1981.

95. Koblin DD, Eger EI II, Johnson BH, et al: Minimum alveolar concentrations and oil/gas partition coefficients of four anesthetic isomers. Anesthesiology 54:314, 1981.

96. Krasowski MD: Differential modulatory actions of the volatile convulsant flurothyl and its anesthetic isomer at inhibitory ligand-gated ion channels. Neuropharmacology 39:1168, 2000.

97. Raines DE, Miller KW: On the importance of volatile agents devoid of anesthetic action. Anesth Analg 79:1031, 1994.

98. Liu J, Laster MJ, Taheri S, et al: Is there a cutoff in anesthetic potency for the normal alkanes? Anesth Analg 77:12, 1993.

99. Liu J, Laster MJ, Koblin DD, et al: A cutoff in anesthetic potency exists in the perfluoroalkanes. Anesth Analg 79:238, 1994.

100. Koblin DD, Chortkoff BS, Laster MJ, et al: Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg 79:1043, 1994.

101. Fang Z, Sonner J, Laster MJ, et al: Anesthetic and convulsant properties of aromatic compounds and cycloalkanes: Implications for mechanisms of narcosis. Anesth Analg 83:1097, 1996.

102. Koblin DD, Laster MJ, Ionescu P, et al: Polyhalogenated methyl ethyl ethers: Solubilities and anesthetic properties. Anesth Analg 88:1161, 1999.

103. Fang Z, Laster MJ, Gong D, et al: Convulsant activity of nonanesthetic gas combinations. Anesth Analg 84:634, 1997.

104. Dutton RC, Maurer AJ, Sonner JM, et al: Short-term memory resists the depressant effect of the nonimmobilizer 1-2-dichlorohexafluorocyclobutane (2N) more than long-term memory. Anesth Analg 94:631, 2002.

105. Borghese CM, Harris RA: Anesthetic-induced immobility: Neuronal nicotinic acetylcholine receptors are no longer in the picture. Anesth Analg 95:509, 2002.

106. Pauling L: A molecular theory of general anesthesia. Science 134:15, 1961.

107. Abraham MH, Lieb WR, Franks NP: Role of hydrogen bonding in general anesthesia. J Pharm Sci 80:719, 1991.

108. Vulliemoz Y, Triner L, Verosky M, et al: Deuterated halothane—Anesthetic potency, anticonvulsant activity, and effect on cerebellar cyclic guanosine 3',5'-monophosphate. Anesth Analg 63:495, 1984.

109. Miller KW: Inert gas narcosis, the high pressure neurological syndrome, and the critical volume hypothesis. Science 185:867, 1974.

110. Ratnakumari L, Vysotskaya TN, Duch DS, et al: Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology 92:529, 2000.

111. Friederich P, Benzenberg D, Trellakis, et al: Interaction of volatile anesthetics with human Kv channels in relation to clinical concentrations. Anesthesiology 95:954, 2001.

112. Brett RS, Dilger JP, Yland KF: Isoflurane causes "flickering" of the acetylcholine receptor channel: Observations using the patch clamp. Anesthesiology 69:161, 1988.

113. Dilger JP, Vidal AM, Mody HI: Evidence for direct actions of general anesthetics on an ion channel protein. Anesthesiology 81:431, 1994.

114. Tanelian DL, Kosek P, Mody I, MacIver MB: The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78:757, 1993.

115. Patel AJ, Honore E: Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95:1013, 2001.

116. MacIver MB, Kendig JJ: Anesthetic effects on membrane resting potential are voltage-dependent and agent-specific. Anesthesiology 74:83, 1991.

117. Janoff AS, Miller KW: A critical assessment of the lipid theories of general anesthetic action. In Chapman D (ed): Biological Membranes. London, Academic Press, 1982, pp 417–476.

118. Tang P, Yan B, Xu Y: Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: A 19 F NMR study. Biophys J 72:1676, 1997.

119. North C, Cafiso DS: Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys J 72:1754, 1997.

120. Johansson JS, Zou H: Nonanesthetics (nonimmobilizers) and anesthetics display different microenvironment preferences. Anesthesiology 95:558, 2001.

121. Raines DE, Cafiso DS: The enhancement of proton/hydroxyl flow across lipid vesicles by inhalation anesthetics. Anesthesiology 70:57, 1989.

122. Franks NP, Lieb WR: Is membrane expansion relevant to anaesthesia? Nature 292:248, 1981.

123. Harris RA, Groh GI: Membrane disordering effects of anesthetics are enhanced by gangliosides. Anesthesiology 62:115, 1985.

124. Mihic J, McQuilkin SJ, Eger EI II, et al: Potentiation of γ-aminobutyric acid type A receptor-mediated chloride currents by novel halogenated compounds correlates with their abilities to induce general anesthesia. Mol Pharmacol 46:851, 1994.
129


125. Qin Z, Szabo G, Cafiso DS: Anesthetics reduce the magnitude of the membrane dipole potential: Measurements in lipid vesicles using voltage-sensitive spin probes. Biochemistry 34:5536, 1995.

126. Cantor RS: Breaking the Meyer-Overton rule: Predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics. Biophys J 80:2284, 2001.

127. Eckenhoff RG, Johansson JS: Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev 49:343, 1997.

128. Miller KW: The nature of sites of general anaesthetic action. Br J Anaesth 89:17, 2002.

129. Bhattacharya AA, Curry S, Franks NP: Binding of the general anesthetics propofol and halothane to human serum albumin. J Biol Chem 275:38731, 2000.

130. Dickinson R, Franks NP, Lieb WR: Thermodynamics of anesthetic/protein interactions: Temperature studies on firefly luciferase. Biophys J 64:1264, 1993.

131. Zhang Y, Stabernack CR, Dutton R, et al: Luciferase as a model for the site of inhaled anesthetic action. Anesth Analg 93:1246, 2001.

132. Eckenhoff RG: An inhalational anesthetic binding domain in the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 93:2807, 1996.

133. Raines DE, Zachariah VT: Isoflurane increases the apparent agonist affinity of the nicotinic acetylcholine receptor by reducing the microscopic agonist dissociation constant. Anesthesiology 92:775, 2000.

134. Raines DE, Claycomb RJ, Scheller M, Forman SA: Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated ion channels. Anesthesiology 95:470, 2001.

135. Dilger JP: The effects of general anaesthetics on ligand-gated ion channels. Br J Anaesth 89:41, 2002.

136. Flood P, Ramirez-Latorre J, Role L: α4β2 Neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but α7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology 86:859, 1997.

137. Downie DL, Vicente-Agullo F, Campos-Caro A, et al: Determinants of the anesthetic sensitivity of neuronal nicotinic acetylcholine receptors. J Biol Chem 277:10367, 2002.

138. Harris BD, Wong G, Moody EJ, et al: Different subunit requirements for volatile and nonvolatile anesthetics at γ-aminobutyric acid type A receptors. Mol Pharmacol 47:363, 1995.

139. Scheller M, Forman SA: The γ subunit determines whether anesthetic-induced leftward shift is altered by a mutation at α1 S270 in α1 β2 γ2L GABAA receptors. Anesthesiology 95:123, 2001.

140. Krasowski MD, Harrison NL: The actions of ether, alcohol and alkane general anaesthetics on GABAA and glycine receptors and the effects of TM2 and TM3 mutations. Br J Pharmacol 129:731, 2000.

141. Jenkins A, Greenblatt EP, Faulkner HJ, et al: Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J Neurosci 21:RC316, 2001.

142. Suzuki T, Koyama H, Sugimoto M, et al: The diverse actions of volatile and gaseous anesthetics on human-cloned 5-hydroxytryptamine3 receptors expressed in Xenopus oocytes. Anesthesiology 96:699, 2002.

143. Minami K, Wick MJ, Stern-bach Y, et al: Sites of volatile anesthetic action on kainate (glutamate receptor 6) receptors. J Biol Chem 273:8248, 1998.

144. Jevtovic-Todorovic V, Todorovic SM, Mennerick S, et al: Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4:460, 1998.

145. Yamakura T, Harris RA: Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels: Comparison with isoflurane and ethanol. Anesthesiology 93:1095, 2000.

146. Raines DE, Claycomb RJ, Forman SA: Nonhalogenated anesthetic alkanes and perhalogenated nonimmobilizing alkanes inhibit α4β2 neuronal nicotinic acetylcholine receptors. Anesth Analg 94:573, 2002.

147. Yamakura T, Lewohl JM, Harris RA: Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels. Anesthesiology 95:144, 2001.

148. Todorovic SM, Jevtovic-Todorovic V, Mennerick S, et al: Cav 3,2 channel is a molecular substrate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide. Mol Pharmacol 60:603, 2001.

149. Gray AT, Zhao BB, Kindler CH, et al: Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology 92:1722, 2000.

150. Durieux ME: Muscarinic signaling in the central nervous system: Recent developments and anesthetic implications. Anesthesiology 84:173, 1996.

151. Minami K, Minami M, Harris RA: Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics. J Pharm Exp Ther 281:1136, 1997.

152. Minami K, Gereau RW IV, Minami M, et al: Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol 53:148, 1998.

153. Rebecchi MJ, Pentyala SN: Anaesthetic actions on other targets: Protein kinase C and guanine nucleotide-binding proteins. Br J Anaesth 89:62, 2002.

154. Ishizawa Y, Sharp R, Liebman PA, et al: Halothane binding to a G protein coupled receptor in retinal membranes by photoaffinity labeling. Biochemistry 39:8497, 2000.

155. Hemmings HC, Adamo AIB: Effect of halothane on conventional protein kinase C translocation and down-regulation in rat cerebrocortical synaptosomes. Br J Anaesth 78:189, 1997.

156. Minami K, Shiraishi M, Uezono Y, et al: The inhibitory effects of anesthetics and ethanol on substance P receptors expressed in Xenopus oocytes. Anesth Analg 94:79, 2002.

157. Patel MK, Mistry D, John JE III, et al: Sodium channel isoform-specific effects of halothane: Protein kinase C co-expression and slow inactivation gating. Br J Pharmacol 130:785, 2000.

158. Koblin DD, Dong DE, Deady JE, et al: Alteration of synaptic membrane fatty acid composition and anesthetic requirement. J Pharmacol Exp Ther 212:546, 1980.

159. Evers AS, Elliott WJ, Lefkowith JB, et al: Manipulation of rat brain fatty acid composition alters volatile anesthetic potency. J Clin Invest 77:1028, 1986.

160. Koblin DD, Dong DE, Eger EI II: Tolerance of mice to nitrous oxide. J Pharmacol Exp Ther 211:317, 1979.

161. Koblin DD, Eger EI II, Smith RA, et al: Chronic exposure of mice to subanesthetic doses of nitrous oxide. In Fink BR (ed): Progress in Anesthesiology, vol 2. Molecular Mechanisms of Anesthesia. New York, Raven Press, 1980, pp 157–164.

162. Ngai SH, Finck AD: Prolonged exposure to nitrous oxide decreases opiate receptor density in rat brainstem. Anesthesiology 57:26, 1982.

163. Ramsay DS, Brown AC, Woods SC: Acute tolerance to nitrous oxide in humans. Pain 51:367, 1992.

164. Smith RA, Winter PM, Smith M, et al: Rapidly developing tolerance to acute exposures to anesthetic agents. Anesthesiology 50:496, 1979.

165. Fender C, Fujinaga M, Maze M: Strain differences in the antinociceptive effect of nitrous oxide on the tail flick test in rats. Anesth Analg 90:195, 2000.

166. Nash HA: In vivo genetics of anaesthetic action. Br J Anaesth 89:143, 2002.

167. Humphrey JA, Sedensky MM, Morgan PG: Understanding anesthesia: Making genetic sense of the absence of senses. Hum Mol Genet 11:1241, 2002.

168. van Swinderen B, Metz LB, Shebester LD, et al: Goα regulates volatile anesthetic action in Caenorhabditis elegans. Genetics 148:643, 2001.

169. Morgan PG, Radke GW, Sedensky MM: Effects of nonimmobilizers and halothane on Caenorhabditis elegans. Anesth Analg 91:1007, 2000.

170. Gamo S, Ogaki M, Nakashima-Tanaka E: Strain differences in minimum anesthetic concentrations in Drosophila melanogaster. Anesthesiology 54:289, 1981.
130


171. Campbell DB, Nash HA: Use of Drosophila mutants to distinguish among volatile anesthetics. Proc Natl Acad Sci U S A 91:2135, 1994.

172. Walcourt A, Scott RL, Nash HA: Blockage of one class of potassium channel alters the effectiveness of halothane in a brain circuit of Drosophila. Anesth Analg 92:535, 2001.

173. Sonner J, Gong D, Eger EI II: Naturally occurring variability in anesthetic potency among inbred mouse strains. Anesth Analg 91:720, 2000.

174. Koblin DD, Dong DE, Deady JE, et al: Selective breeding alters murine resistance to nitrous oxide without alteration in synaptic membrane lipid composition. Anesthesiology 52:401, 1980.

175. Roizen MF, Koblin DD, Johnson BH, et al: Mechanism of age-related and nitrous oxide-associated anesthetic sensitivity: The role of brain catecholamines. Anesthesiology 69:716, 1988.

176. Sonner J, Gong D, Li J, et al: Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds. Anesth Analg 89:1030, 1999.

177. Dahan A, Sarton E, Teppema L, et al: Anesthetic potency and influence of morphine and sevoflurane on respiration in μ-opioid receptor knockout mice. Anesthesiology 94:824, 2001.

178. Joo DT, Gong D, Sonner JM, et al: Blockade of AMPA receptors and volatile anesthetics: Reduced anesthetic requirements in GluR2 null mutant mice for loss of the righting reflex and antinociception but not minimum alveolar concentration. Anesthesiology 94:478, 2001.

179. Quinlan JJ, Ferguson C, Jester K, et al: Mice with glycine receptor subunit mutations are both sensitive and resistant to volatile anesthetics. Anesth Analg 95:578, 2002.

180. Homanics GE, Ferguson C, Quinlan JJ, et al: Gene knockout of the α6 subunit of the γ-aminobutyric acid type A receptor: Lack of effect on responses to ethanol, pentobarbital, and general anesthetics. Mol Pharmacol 51:588, 1997.

181. Quinlan JJ, Homanics GE, Firestone LL: Anesthesia sensitivity in mice that lack the β3 subunit of the γ-aminobutyric acid type A receptor. Anesthesiology 88:775, 1998.

182. Wong SME, Cheng G, Homanics GE, et al: Enflurane actions on spinal cords from mice that lack the β3 subunit of the GABAA receptor. Anesthesiology 95:154, 2001.

Previous Next