Previous Next

REFERENCES

151. Renou AM, Vernhiet J, Macrez P, et al: Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth 50:1047–1050, 1978.

152. Jobes DR, Kennell EM, Bush GL, et al: Cerebral blood flow and metabolism during morphine-nitrous oxide anesthesia in man. Anesthesiology 47:16–18, 1977.

153. Vernhiet J, Macrez P, Renou AM, et al: Effets des fortes doses de morphinomimetiques (fentanyl et fentathienyl) sur la circulation cerebrale du sujet normal. Ann Anesth Franc 18:803–810, 1977.

154. Stephan H, Groger P, Weyland A, et al: The effect of sufentanil on cerebral blood flow, cerebral metabolism and the CO2 reactivity of the cerebral vessels in man [in German]. Anaesthesist 40:153–160, 1991.

155. Cotev S, Shalit MN: Effects of diazepam on cerebral blood flow and oxygen uptake after head injury. Anesthesiology 43:117–122, 1975.

156. Forster A, Juge O, Morel D: Effects of midazolam on cerebral blood flow in human volunteers. Anesthesiology 56:453–455, 1982.

157. Takeshita H, Okuda Y, Sari A: The effects of ketamine on cerebral circulation and metabolism in man. Anesthesiology 36:69–75, 1972.

158. Paris A, Scholz J, von Knobelsdorff G, et al: The effect of remifentanil on cerebral blood flow velocity. Anesth Analg 87:569–573, 1998.

159. Kofke WA, Attaallah AF, Kuwabara H, et al: The neuropathologic effects in rats and neurometabolic effects in humans of large dose remifentanil. Anesth Analg 94:1229–1236, 2002.

160. Zornow MH, Fleischer JE, Scheller MS, et al: Dexmedetomidine, an alpha 2 adrenergic agonist, decreases cerebral blood flow in the isoflurane anesthetized dog. Anesth Analg 70:624–630, 1990.

161. Marin J, Lobato RD, Rico ML, et al: Effect of pentobarbital on the reactivity of isolated human cerebral arteries. J Neurosurg 54:521–524, 1981.

162. Ogura K, Takayasu M, Dacey RG: Differential effects of pentobarbital on intracerebral arterioles and venules of rats in vitro. Neurosurgery 28:537–541, 1991.

163. Moriyama S, Nakamura K, Hatano Y, et al: Responses to barbiturates of isolated dog cerebral and mesenteric arteries contracted with KCl and prostaglandin F . Acta Anaesthesiol Scand 34:523–529, 1990.

164. Stulken EH, Milde JH, Michenfelder JD, Tinker JH: The nonlinear responses of cerebrospinal metabolism to low concentrations of halothane, enflurane, isoflurane, and thiopental. Anesthesiology 46:28–34, 1977.

165. Albrecht RF, Miletich DJ, Rosenberg R, Zahed B: Cerebral blood flow and metabolic changes from induction to onset of anesthesia with halothane or pentobarbital. Anesthesiology 47:252–256, 1977.

166. Astrup J, Rosenorn J, Cold GE, et al: Minimum cerebral blood flow and metabolism during craniotomy. Effect of thiopental loading. Acta Anaesthesiol Scand 28:478–481, 1984.

167. Astrup J, Sørensen PM, Sørensen HR: Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital, and lidocaine. Anesthesiology 55:263–268, 1981.


848


168. Altenburg BM, Michenfelder JD, Theye RA: Acute tolerance to thiopental in canine cerebral oxygen consumption studies. Anesthesiology 31:443–457, 1969.

169. Gronert GA, Michenfelder JD, Sharbrough FW, Milde JH: Canine cerebral metabolic tolerance during 24 hours of deep pentobarbital anesthesia. Anesthesiology 55:110–113, 1981.

170. Sawada Y, Sugimoto H, Kobayash H, et al: Acute tolerance to high-dose barbiturate treatment in patients with severe head injuries. Anesthesiology 56:53–54, 1982.

171. Reivich M: Regulation of the cerebral circulation. Clin Neurosurg 1:378–418, 1969.

172. Kassell NF, Hitchon PW, Gerk MK, et al: Influence of changes in arterial pCO2 on cerebral blood flow and metabolism during high-dose barbiturate therapy in dogs. J Neurosurg 54:615–619, 1981.

173. Vandesteene A, Trempont V, Engelman E, et al: Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia 43:42–43, 1988.

174. Oshmia T, Karasawa F, Satoh T: Effects of propofol on cerebral blood flow and the metabolic rate of oxygen in humans. Acta Anaesthesiol Scand 46:831–835, 2002.

175. Alkire MT, Haier RJ, Barker SJ, et al: Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82:393–403, 1995.

176. Petersen KD, Landsfeldt U, Cold GE, et al: Intracranial pressure and cerebral hemodynamics in patients with cerebral tumors. Anesthesiology 98:329–336, 2003.

177. Ravussin P, Guinard JP, Ralley F, Thorin D: Effect of propofol on cerebrospinal fluid pressure and cerebral perfusion pressure in patients undergoing craniotomy. Anaesthesia 43:37–41, 1988.

178. Fox J, Gelb AW, Enns J, et al: The responsiveness of cerebral blood flow to changes in arterial carbon dioxide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology 77:453–456, 1992.

179. Craen RA, Gelb AW, Murkin JM, Chong KY: Human cerebral autoregulation is maintained during propofol air/O2 anesthesia [abstract]. J Neurosurg Anesthesiol 4:298, 1992.

180. Matta BF, Mayberg TS, Lam AM: Direct cerebrovasodilatory effects of halothane, isoflurane and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology 83:980–985, 1995.

181. Cameron AE: Opisthotonus again [letter]. Anaesthesia 42:1124, 1987.

182. Hopkins CS: Recurrent opisthotonus associated with anaesthesia [letter]. Anaesthesia 43:904, 1988.

183. Jones GW, Boykett MH, Klok M: Propofol, opisthotonus and epilepsy [letter]. Anaesthesia 43:905, 1988.

184. DeFriez CB, Wong HC: Seizures and opisthotonos after propofol anesthesia. Anesth Analg 75:630–632, 1992.

185. Bevan JC: Propofol-related convulsions. Can J Anaesth 40:805–809, 1993.

186. Borgeat A, Dessibourg C, Popovic V, et al: Propofol and spontaneous movements: An EEG study. Anesthesiology 74:24–27, 1991.

187. Cheng MA, Tempelhoff R, Silbergeld DL, et al: Large-dose propofol alone in adult epileptic patients: Electrocorticographic results. Anesth Analg 83:169–174, 1996.

188. Samra SK, Sneyd JR, Ross DA, Henry TR: Effects of propofol sedation on seizures and intracranially recorded epileptiform activity in patients with partial epilepsy. Anesthesiology 82:843–851, 1995.

189. Lowson S, Gent JP, Goodchild CS: Anticonvulsant properties of propofol and thiopentone: Comparison using two tests in laboratory mice. Br J Anaesth 64:59–63, 1990.

190. Lowson S, Gent JP, Goodchild CS: Convulsive thresholds in mice during the recovery phase from anaesthesia induced by propofol, thiopentone, methohexitone and etomidate. Br J Pharmacol 102:879–882, 1991.

191. Rampton AJ, Griffin RM, Stuart CS, et al: Comparison of methohexital and propofol for electroconvulsive therapy: Effects on hemodynamic responses and seizure duration. Anesthesiology 70:412–417, 1989.

192. Herrick IA, Craen RA, Gelb AW, et al: Propofol sedation during awake craniotomy for seizures: Patient-controlled administration versus neurolept analgesia. Anesth Analg 84:1280–1284, 1997.

193. Drummond JC, Iragui-Madoz VJ, Alksne JF, Kalkman CJ: Masking of epileptiform activity by propofol during seizure surgery. Anesthesiology 76:652–654, 1992.

194. Cold GE, Eskesen V, Eriksen H, et al: CBF and CMRO2 during continuous etomidate infusion supplemented with N2 O and fentanyl in patients with supratentorial cerebral tumour. A dose-response study. Acta Anaesthesiol Scand 29:490–491, 1985.

195. Cold GE, Eskesen V, Eriksen H, Lyon BB: Changes in CMRO2 , EEG and concentration of etomidate in serum and brain tissue during craniotomy with continuous etomidate supplemented with N2 O and fentanyl. Acta Anaesthesiol Scand 30:159–163, 1986.

196. Kofke WA, Dong ML, Bloom M, et al: Transcranial Doppler ultrasonography with induction of anesthesia for neurosurgery. J Neurosurg Anesthesiol 6:89–97, 1994.

197. Bingham RM, Procaccio F, Prior PF, Hinds CJ: Cerebral electrical activity influences the effects of etomidate on cerebral perfusion pressure in traumatic coma. Br J Anaesth 57:843–848, 1985.

198. Davis DW, Mans AM, Biebuyck JF, Hawkins RA: Regional brain glucose utilization in rats during etomidate anesthesia. Anesthesiology 64:751–757, 1986.

199. Modica PA, Tempelhoff R: Intracranial pressure during induction of anaesthesia and tracheal intubation with etomidate-induced EEG burst suppression. Can J Anaesth 39:236–241, 1992.

200. Dearden NM, McDowall DG: Comparison of etomidate and althesin in the reduction of increased intracranial pressure after head injury. Br J Anaesth 57:361–368, 1985.

201. Hoffman WE, Charbel FT, Edelman G, et al: Comparison of the effect of etomidate and desflurane on brain tissue gases and pH during prolonged middle cerebral artery occlusion. Anesthesiology 88:1188–1194, 1998.

202. Levy ML, Aranda M, Zelman V, Giannotta SL: Propylene glycol toxicity following continuous etomidate infusion for the control of refractory cerebral edema. Neurosurgery 37:363–371, 1995.

203. Hoehner PJ, Whitson JT, Kirsch JR, Traystman RJ: Effect of intracarotid and intraventricular morphine on regional cerebral blood flow and metabolism in pentobarbital-anesthetized dogs. Anesth Analg 76:266–273, 1993.

204. Moyer JH, Pontius R, Morris G, Hershberger R: Effect of morphine and n-allylnormorphine on cerebral hemodynamics and oxygen metabolism. Circulation 15:379–384, 1957.

205. Takeshita H, Michenfelder JD, Theye RA: The effects of morphine and n-allylnormorphine on canine cerebral metabolism and circulation. Anesthesiology 37:605–612, 1972.

206. Jobes DR, Kennell E, Bitner R, et al: Effects of morphine-nitrous oxide anesthesia on cerebral autoregulation. Anesthesiology 42:30–34, 1975.

207. Murkin JM, Farrar JK, Tweed WA, et al: Relationship between cerebral blood flow and O2 consumption during high-dose narcotic anesthesia for cardiac surgery [abstract]. Anesthesiology 63:A44, 1985.

208. Firestone LL, Gyulai F, Mintun M, et al: Human brain activity response to fentanyl imaged by positron emission tomography. Anesth Analg 82:1247–1251, 1996.

209. McPherson RW, Traystman RJ: Fentanyl and cerebral vascular responsivity in dogs. Anesthesiology 60:180–186, 1984.

210. Baughman VL, Hoffman WE, Albrecht RF, Miletich DJ: Cerebral vascular and metabolic effects of fentanyl and midazolam in young and aged rats. Anesthesiology 67:314–319, 1987.

211. Keykhah MM, Smith DS, Carlsson C, et al: Influence of sufentanil on cerebral metabolism and circulation in the rat. Anesthesiology 63:274–277, 1985.

212. Michenfelder JD, Theye RA: Effects of fentanyl, droperidol and Innovar on canine cerebral metabolism and blood flow. Br J Anaesth 43:630–636, 1971.
849


213. McPherson RW, Krempasanka E, Eimerl D, Traystman RJ: Effects of alfentanil on cerebral vascular reactivity in dogs. Br J Anaesth 57:1232–1238, 1985.

214. Schregel W, Schafermeyer H, Muller C, et al: The effect of halothane, alfentanil and propofol on blood flow velocity, blood vessel cross section and blood volume flow in the middle cerebral artery [in German]. Anaesthesist 41:21–26, 1992.

215. Mayberg TS, Lam AM, Eng CC, et al: The effect of alfentanil on cerebral blood flow velocity and intracranial pressure during isoflurane-nitrous oxide anesthesia in humans. Anesthesiology 78:288–294, 1993.

216. Milde LN, Milde JH, Gallagher WJ: Effects of sufentanil on cerebral circulation and metabolism in dogs. Anesth Analg 70:138–146, 1990.

217. Werner C, Hoffman WE, Baughman VL, et al: Effects of sufentanil on cerebral blood flow, cerebral blood flow velocity, and metabolism in dogs. Anesth Analg 72:177–181, 1991.

218. Bunegin L, Albin MS, Ernst PS, Garcia C: Cerebrovascular responses to sufentanil citrate in primates with and without intracranial hypertension [abstract]. Anesth Analg 70:S42, 1990.

219. Murkin JM, Farrar JK, Tweed WA: Sufentanil anaesthesia reduces cerebral blood flow and cerebral oxygen consumption [abstract]. Can J Anaesth 35:S131, 1988.

220. Mayer N, Weinstabl C, Podreka I, Spiss CK: Sufentanil does not increase cerebral blood flow in healthy human volunteers. Anesthesiology 73:240–243, 1990.

221. Weinstabl C, Mayer N, Spiss CK: Sufentanil decreases cerebral blood flow velocity in patients with elevated intracranial pressure. Eur J Anaesthesiol 9:481–484, 1992.

222. Sheehan PB, Zornow MH, Scheller MS, Peterson BM: The effects of fentanyl and sufentanil on intracranial pressure and cerebral blood flow in rabbits with an acute cryogenic brain injury. J Neurosurg Anesthesiol 4:261–267, 1992.

223. Weinstabl C, Mayer N, Richling B, et al: Effect of sufentanil on intracranial pressure in neurosurgical patients. Anaesthesia 46:837–840, 1991.

224. Werner C, Kochs E, Hoffman WE, et al: Sufentanil does not change cerebral hemodynamics and ICP in head injured patients [abstract]. J Neurosurg Anesthesiol 4:313, 1992.

225. Jamali S, Ravussin P, Archer D, et al: The effects of bolus administration of opioids on cerebrospinal fluid pressure in patients with supratentorial lesions. Anesth Analg 82:600–606, 1996.

226. Lauer KK, Connolly LA, Schmeling WT: Opioid sedation does not alter intracranial pressure in head injured patients. Can J Anaesth 44:929–933, 1997.

227. Marx W, Shah N, Long C, et al: Sufentanil, alfentanil, and fentanyl: Impact on cerebrospinal fluid pressure in patients with brain tumors. J Neurosurg Anesthesiol 1:3–7, 1989.

228. Sperry RJ, Bailey PL, Reichman MV, et al: Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology 77:416–420, 1992.

229. Albanese J, Durbec O, Viviand X, et al: Sufentanil increases intracranial pressure in patients with head trauma. Anesthesiology 79:493–497, 1993.

230. Werner C, Kochs E, Bause H, et al: Effects of sufentanil on cerebral hemodynamics and intracranial pressure in patients with brain injury. Anesthesiology 83:721–726, 1995.

231. Herrick I, Gelb A, Manninen PH, et al: Effects of fentanyl, sufentanil, and alfentanil on brain retractor pressure. Anesth Analg 72:359–363, 1991.

232. From RP, Warner DS, Todd MM, Sokoll MD: Anesthesia for craniotomy: A double-blind comparison of alfentanil, fentanyl, and sufentanil. Anesthesiology 73:896–904, 1990.

233. Bristow A, Shalev D, Rice B, et al: Low-dose synthetic narcotic infusions for cerebral relaxation during craniotomies. Anesth Analg 66:413–416, 1987.

234. Shupak RC, Harp JR: Comparison between high-dose sufentanil-oxygen and high-dose fentanyl-oxygen for neuroanaesthesia. Br J Anaesth 57:375–381, 1985.

235. Jung R, Shah N, Reinsel R, et al: Cerebrospinal fluid pressure in patients with brain tumors: Impact of fentanyl versus alfentanil during nitrous oxide-oxygen anesthesia. Anesth Analg 71:419–422, 1990.

236. Moss E: Alfentanil increases intracranial pressure when intracranial compliance is low. Anaesthesia 47:134–136, 1992.

237. Markovitz BP, Duhaime A-C, Sutton L, et al: Effects of alfentanil on intracranial pressure in children undergoing ventriculoperitoneal shunt revision. Anesthesiology 76:71–76, 1992.

238. Souter MJ, Andrews PJD, Piper IR, Miller JD: Effects of alfentanil on cerebral haemodynamics in an experimental model of traumatic brain injury. Br J Anaesth 79:97–102, 1997.

239. Warner DS, Hindman BJ, Todd MM, et al: Intracranial pressure and hemodynamic effects of remifentanil versus alfentanil in patients undergoing supratentorial craniotomy. Anesth Analg 83:348–353, 1996.

240. Ostapkovich N, Baker KZ, Fogerty-Mack P, et al: Cerebral blood flow and CO2 reactivity is similar during remifentanil/N2 O and fentanyl/N2 O anesthesia. Anesthesiology 89:358–363, 1998.

241. Paris A, Scholz J, von Knobelsdorff G, et al: The effect of remifentanil on cerebral blood flow velocity. Anesth Analg 87:569–573, 1998.

242. Wagner K, Wiloch F, Kochs E, et al: Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans. Anesthesiology 94:732–739, 2001.

243. Lorenz I, Kolbitsch C, Hormann C, et al: The influence of nitrous oxide and remifentanil on cerebral hemodynamics in conscious human volunteers. Neuroimage 17:1056–1064, 2002.

244. Lorenz I, Kolbitsch C, Schocke M, et al: Low-dose remifentanil increases regional cerebral blood flow and regional cerebral blood volume, but decreases regional mean transit time and regional cerebrovascular resistance in volunteers. Br J Anaesth 85:199–204, 2000.

245. Rockoff MA, Naughton KVH, Shapiro HM, et al: Cerebral circulatory and metabolic responses to intravenously administered lorazepam. Anesthesiology 53:215–218, 1980.

246. Forster A, Juge O, Louis M, Nahory A: Effects of a specific benzodiazepine antagonist (RO 15-1788) on cerebral blood flow. Anesth Analg 66:309–313, 1987.

247. Veselis RA, Reinsel RA, Beattie BJ, et al: Midazolam changes cerebral blood flow in discrete brain regions: An H2 15 O positron emission tomography study. Anesthesiology 87:1106–1117, 1997.

248. Forster A, Juge O, Morel D: Effects of midazolam on cerebral hemodynamics and cerebral vasomotor responsiveness to carbon dioxide. J Cereb Blood Flow Metab 3:246–249, 1983.

249. Fleischer JE, Milde JH, Moyer TP, Michenfelder JD: Cerebral effects of high-dose midazolam and subsequent reversal with RO 15-1788 in dogs. Anesthesiology 68:234–242, 1988.

250. Nugent M, Artru AA, Michenfelder JD: Cerebral metabolic, vascular and protective effects of midazolam maleate. Anesthesiology 56:172–176, 1982.

251. Wolf J, Friberg L, Jensen J, et al: The effect of the benzodiazepine antagonist flumazenil on regional cerebral blood flow in human volunteers. Br J Anaesth 34:628–631, 1990.

252. Artru AA: Flumazenil reversal of midazolam in dogs: Dose-related changes in cerebral blood flow, metabolism, EEG, and CSF pressure. J Neurosurg Anesthesiol 1:46–55, 1989.

253. Knudsen L, Cold GE, Holdgård HO, et al: Effects of flumazenil on cerebral blood flow and oxygen consumption after midazolam anaesthesia for craniotomy. Br J Anaesth 67:277–280, 1991.

254. Chiolero RL, Ravussin P, Anderes JP, et al: The effects of midazolam reversal by RO 15-1788 on cerebral perfusion pressure in patients with severe head injury. Intensive Care Med 14:196–200, 1988.

255. Kumano H, Shimomura T, Furuya H, et al: Effects of flumazenil during administration of midazolam on pial vessel diameter and regional cerebral blood flow in cats. Acta Anaesthesiol Scand 37:567–570, 1993.
850


256. Lanier WL, Albrecht RF, Iaizzo PA: Divergence of intracranial and central venous pressures in lightly anesthetized, tracheally intubated dogs that move in response to a noxious stimulus. Anesthesiology 84:605–613, 1996.

257. Sari A, Okuda Y, Takeshita H: The effects of Thalamonal on cerebral circulation and oxygen consumption in man. Br J Anaesth 44:330–334, 1972.

258. Misfeldt BB, Jorgensen PB, Spotoft H, Rønde F: The effects of droperidol and fentanyl on intracranial pressure and cerebral perfusion. Br J Anaesth 48:963–968, 1976.

259. Miller R, Tausk HC, Stark DCC: Effect of Innovar, fentanyl and droperidol on the cerebrospinal fluid pressure in neurosurgical patients. Can J Anaesth 22:502–508, 1975.

260. Fitch W, Barker J, Jennett WB, McDowall DG: The influence of neuroleptanalgesic drugs on cerebrospinal fluid pressure. Br J Anaesth 41:800–806, 1969.

261. Fukuda S, Murakawa T, Takeshita H, Toda N: Direct effects of ketamine on isolated canine cerebral and mesenteric arteries. Anesth Analg 62:553–558, 1983.

262. Cavazzuti M, Porro CA, Biral GP, et al: Ketamine effects on local cerebral blood flow and metabolism in the rat. J Cereb Blood Flow Metab 7:806–811, 1987.

263. Hougaard K, Hansen A, Brodersen P: The effect of ketamine on regional cerebral blood flow in man. Anesthesiology 41:562–567, 1974.

264. Strebel S, Kaufmann M, Maître L, Schaefer HG: Effects of ketamine on cerebral blood flow velocity in humans. Influence of pretreatment with midazolam or esmolol. Anaesthesia 50:223–228, 1995.

265. Crosby G, Crane AM, Sokoloff L: Local changes in cerebral glucose utilization during ketamine anesthesia. Anesthesiology 56:437–443, 1982.

266. Vollenweider FX, Leenders KL, Oye I, et al: Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7:25–38, 1997.

267. Vollenweider FX, Leenders KL, Scharfetter C, et al: Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18 F] fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7:9–24, 1997.

268. Holcomb HH, Lahti AC, Medoff DR, et al: Sequential regional cerebral blood flow brain scans using PET with H2 15 O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165–172, 2001.

269. Schmidt A, Ryding E, Akeson J: Racemic ketamine does not abolish cerebrovascular autoregulation in the pig. Acta Anesthesiol Scand 47:569–575, 2003.

270. Shapiro HM, Wyte SR, Harris AB: Ketamine anesthesia in patients with intracranial pathology. Br J Anaesth 44:1200–1204, 1972.

271. Belopavlovic M, Buchthal A: Modification of ketamine-induced intracranial hypertension in neurosurgical patients by pretreatment with midazolam. Acta Anaesthesiol Scand 26:458–462, 1982.

272. Mayberg TS, Lam AM, Matta BF, et al: Ketamine does not increase cerebral blood flow velocity or intracranial pressure during isoflurane/nitrous oxide anesthesia in patients undergoing craniotomy. Anesth Analg 81:84–89, 1995.

273. Akeson J, Bjorkman S, Messeter K, Rosén I: Low-dose midazolam antagonizes cerebral metabolic stimulation by ketamine in the pig. Acta Anaesthesiol Scand 37:525–531, 1993.

274. Sakai K, Cho S, Fukusaki M, et al: The effects of propofol with and without ketamine on human cerebral blood flow velocity and CO2 response. Anesth Analg 90:377–382, 2000.

275. Albanése J, Arnaud S, Rey M, et al: Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology 87:1328–1334, 1997.

276. Sakabe T, Maekawa T, Ishikawa T, Takeshita H: The effects of lidocaine on canine cerebral metabolism and circulation related to the electroencephalogram. Anesthesiology 40:433–441, 1974.

277. Lam AM, Donlon E, Eng CC, et al: The effect of lidocaine on cerebral blood flow and metabolism during normocapnia and hypocapnia in humans [abstract]. Anesthesiology 79:A202, 1993.

278. Bedford RF, Persing JA, Pobereskin L, Butler A: Lidocaine or thiopental for rapid control of intracranial hypertension? Anesth Analg 59:435–437, 1980.

279. Donegan MF, Bedford RF: Intravenously administered lidocaine prevents intracranial hypertension during endotracheal suctioning. Anesthesiology 52:516–518, 1980.

280. Tommasino C, Maekawa T, Shapiro HM: Local cerebral blood flow during lidocaine-induced seizures in rats. Anesthesiology 64:771–777, 1986.

281. Stoelting RK: Pharmacology and Physiology in Anesthetic Practice. Philadelphia, JB Lippincott, 1987.

282. Viegas O, Stoelting RK: Lidocaine in arterial blood after laryngotracheal administration. Anesthesiology 43:491–493, 1975.

283. Michenfelder JD, Theye RA: In vivo toxic effects of halothane on canine cerebral metabolic pathways. Am J Physiol 229:1050–1055, 1975.

284. Michenfelder JD, Cucchiara RF: Canine cerebral oxygen consumption during enflurane anesthesia and its modification during induced seizures. Anesthesiology 40:575–580, 1974.

285. Todd MM, Drummond JC: A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology 60:276–282, 1984.

286. Lutz LJ, Milde JH, Milde LN: The cerebral functional, metabolic, and hemodynamic effects of desflurane in dogs. Anesthesiology 73:125–131, 1990.

287. Scheller MS, Tateishi A, Drummond JC, Zornow MH: The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology 68:548–551, 1988.

288. Kuramoto T, Oshita S, Takeshita H, Ishikawa T: Modification of the relationship between cerebral metabolism, blood flow and electroencephalogram by stimulation during anesthesia in the dog. Anesthesiology 51:211–217, 1979.

289. Drummond JC, Todd MM, Scheller MS, Shapiro HM: A comparison of the direct cerebral vasodilating potencies of halothane and isoflurane in the New Zealand white rabbit. Anesthesiology 65:462–467, 1986.

290. Lam AM, Mayberg TS, Eng CC, et al: Nitrous oxide-isoflurane anesthesia causes more cerebral vasodilation than an equipotent dose of isoflurane in humans. Anesth Analg 78:462–468, 1994.

291. Kuroda Y, Murakami M, Tsuruta J, et al: Blood flow velocity of middle cerebral artery during prolonged anesthesia with halothane, isoflurane, and sevoflurane in humans. Anesthesiology 87:527–532, 1997.

292. Lenz C, Rebel A, Klaus V, et al: Local cerebral blood flow, local cerebral glucose utilization, and flow-metabolism coupling during sevoflurane versus isoflurane anesthesia in rats. Anesthesiology 89:1480–1488, 1998.

293. Sakabe T, Kuramoto T, Kumagae S, Takeshita H: Cerebral responses to the addition of nitrous oxide to halothane in man. Br J Anaesth 48:957–962, 1976.

294. Heath KJ, Gupta S, Matta BF: The effects of sevoflurane on cerebral hemodynamics during propofol anesthesia. Anesth Analg 85:1284–1287, 1997.

295. Murphy FL, Kennell EM, Johnstone RE, et al: The effects of enflurane, isoflurane, and halothane on cerebral blood flow and metabolism in man [abstract]. Paper presented at the Annual Meeting of the American Society of Anesthesiologists, October 1974, pp 62–63.

296. Eintrei C, Leszneiwski W, Carlsson C: Local application of 133 xenon for measurement of regional cerebral blood flow (rCBF) during halothane, enflurane, and isoflurane anesthesia in humans. Anesthesiology 63:391–394, 1985.

297. Ornstein E, Young WL, Ostapkovich N, et al: Comparative effects of desflurane and isoflurane on cerebral blood flow [abstract]. Anesthesiology 75:A209, 1991.
851


298. Johnson J, Sperry RJ, Lam A, Artru A: A phase III, randomized, open-label study to compare sevoflurane and isoflurane in neurosurgical patients. Anesth Analg 80:S214, 1995.

299. Wollman H, Alexander SC, Cohen PJ, et al: Cerebral circulation of man during halothane anesthesia. Anesthesiology 25:180–184, 1964.

300. Todd MM, Drummond JC, Shapiro HM: Comparative cerebrovascular and metabolic effects of halothane, enflurane, and isoflurane [abstract]. Anesthesiology 57:A332, 1982.

Previous Next