|
|
REFERENCES
151.
Renou AM, Vernhiet J, Macrez P, et al: Cerebral
blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth 50:1047–1050,
1978.
152.
Jobes DR, Kennell EM, Bush GL, et al: Cerebral
blood flow and metabolism during morphine-nitrous oxide anesthesia in man. Anesthesiology
47:16–18, 1977.
153.
Vernhiet J, Macrez P, Renou AM, et al: Effets
des fortes doses de morphinomimetiques (fentanyl et fentathienyl) sur la circulation
cerebrale du sujet normal. Ann Anesth Franc 18:803–810, 1977.
154.
Stephan H, Groger P, Weyland A, et al: The effect
of sufentanil on cerebral blood flow, cerebral metabolism and the CO2
reactivity of the cerebral vessels in man [in German]. Anaesthesist 40:153–160,
1991.
155.
Cotev S, Shalit MN: Effects of diazepam on cerebral
blood flow and oxygen uptake after head injury. Anesthesiology 43:117–122,
1975.
156.
Forster A, Juge O, Morel D: Effects of midazolam
on cerebral blood flow in human volunteers. Anesthesiology 56:453–455, 1982.
157.
Takeshita H, Okuda Y, Sari A: The effects of
ketamine on cerebral circulation and metabolism in man. Anesthesiology 36:69–75,
1972.
158.
Paris A, Scholz J, von Knobelsdorff G, et al:
The effect of remifentanil on cerebral blood flow velocity. Anesth Analg 87:569–573,
1998.
159.
Kofke WA, Attaallah AF, Kuwabara H, et al: The
neuropathologic effects in rats and neurometabolic effects in humans of large dose
remifentanil. Anesth Analg 94:1229–1236, 2002.
160.
Zornow MH, Fleischer JE, Scheller MS, et al:
Dexmedetomidine, an alpha 2 adrenergic agonist, decreases cerebral blood flow in
the isoflurane anesthetized dog. Anesth Analg 70:624–630, 1990.
161.
Marin J, Lobato RD, Rico ML, et al: Effect of
pentobarbital on the reactivity of isolated human cerebral arteries. J Neurosurg
54:521–524, 1981.
162.
Ogura K, Takayasu M, Dacey RG: Differential effects
of pentobarbital on intracerebral arterioles and venules of rats in vitro. Neurosurgery
28:537–541, 1991.
163.
Moriyama S, Nakamura K, Hatano Y, et al: Responses
to barbiturates of isolated dog cerebral and mesenteric arteries contracted with
KCl and prostaglandin F2α
. Acta Anaesthesiol Scand 34:523–529,
1990.
164.
Stulken EH, Milde JH, Michenfelder JD, Tinker
JH: The nonlinear responses of cerebrospinal metabolism to low concentrations of
halothane, enflurane, isoflurane, and thiopental. Anesthesiology 46:28–34,
1977.
165.
Albrecht RF, Miletich DJ, Rosenberg R, Zahed B:
Cerebral blood flow and metabolic changes from induction to onset of anesthesia
with halothane or pentobarbital. Anesthesiology 47:252–256, 1977.
166.
Astrup J, Rosenorn J, Cold GE, et al: Minimum
cerebral blood flow and metabolism during craniotomy. Effect of thiopental loading.
Acta Anaesthesiol Scand 28:478–481, 1984.
167.
Astrup J, Sørensen PM, Sørensen
HR: Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia,
pentobarbital, and lidocaine. Anesthesiology 55:263–268, 1981.
168.
Altenburg BM, Michenfelder JD, Theye RA: Acute
tolerance to thiopental in canine cerebral oxygen consumption studies. Anesthesiology
31:443–457, 1969.
169.
Gronert GA, Michenfelder JD, Sharbrough FW, Milde
JH: Canine cerebral metabolic tolerance during 24 hours of deep pentobarbital anesthesia.
Anesthesiology 55:110–113, 1981.
170.
Sawada Y, Sugimoto H, Kobayash H, et al: Acute
tolerance to high-dose barbiturate treatment in patients with severe head injuries.
Anesthesiology 56:53–54, 1982.
171.
Reivich M: Regulation of the cerebral circulation.
Clin Neurosurg 1:378–418, 1969.
172.
Kassell NF, Hitchon PW, Gerk MK, et al: Influence
of changes in arterial pCO2
on cerebral
blood flow and metabolism during high-dose barbiturate therapy in dogs. J Neurosurg
54:615–619, 1981.
173.
Vandesteene A, Trempont V, Engelman E, et al:
Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia 43:42–43,
1988.
174.
Oshmia T, Karasawa F, Satoh T: Effects of propofol
on cerebral blood flow and the metabolic rate of oxygen in humans. Acta Anaesthesiol
Scand 46:831–835, 2002.
175.
Alkire MT, Haier RJ, Barker SJ, et al: Cerebral
metabolism during propofol anesthesia in humans studied with positron emission tomography.
Anesthesiology 82:393–403, 1995.
176.
Petersen KD, Landsfeldt U, Cold GE, et al: Intracranial
pressure and cerebral hemodynamics in patients with cerebral tumors. Anesthesiology
98:329–336, 2003.
177.
Ravussin P, Guinard JP, Ralley F, Thorin D: Effect
of propofol on cerebrospinal fluid pressure and cerebral perfusion pressure in patients
undergoing craniotomy. Anaesthesia 43:37–41, 1988.
178.
Fox J, Gelb AW, Enns J, et al: The responsiveness
of cerebral blood flow to changes in arterial carbon dioxide is maintained during
propofol-nitrous oxide anesthesia in humans. Anesthesiology 77:453–456, 1992.
179.
Craen RA, Gelb AW, Murkin JM, Chong KY: Human
cerebral autoregulation is maintained during propofol air/O2
anesthesia
[abstract]. J Neurosurg Anesthesiol 4:298, 1992.
180.
Matta BF, Mayberg TS, Lam AM: Direct cerebrovasodilatory
effects of halothane, isoflurane and desflurane during propofol-induced isoelectric
electroencephalogram in humans. Anesthesiology 83:980–985, 1995.
181.
Cameron AE: Opisthotonus again [letter]. Anaesthesia
42:1124, 1987.
182.
Hopkins CS: Recurrent opisthotonus associated
with anaesthesia [letter]. Anaesthesia 43:904, 1988.
183.
Jones GW, Boykett MH, Klok M: Propofol, opisthotonus
and epilepsy [letter]. Anaesthesia 43:905, 1988.
184.
DeFriez CB, Wong HC: Seizures and opisthotonos
after propofol anesthesia. Anesth Analg 75:630–632, 1992.
185.
Bevan JC: Propofol-related convulsions. Can
J Anaesth 40:805–809, 1993.
186.
Borgeat A, Dessibourg C, Popovic V, et al: Propofol
and spontaneous movements: An EEG study. Anesthesiology 74:24–27, 1991.
187.
Cheng MA, Tempelhoff R, Silbergeld DL, et al:
Large-dose propofol alone in adult epileptic patients: Electrocorticographic results.
Anesth Analg 83:169–174, 1996.
188.
Samra SK, Sneyd JR, Ross DA, Henry TR: Effects
of propofol sedation on seizures and intracranially recorded epileptiform activity
in patients with partial epilepsy. Anesthesiology 82:843–851, 1995.
189.
Lowson S, Gent JP, Goodchild CS: Anticonvulsant
properties of propofol and thiopentone: Comparison using two tests in laboratory
mice. Br J Anaesth 64:59–63, 1990.
190.
Lowson S, Gent JP, Goodchild CS: Convulsive thresholds
in mice during the recovery phase from anaesthesia induced by propofol, thiopentone,
methohexitone and etomidate. Br J Pharmacol 102:879–882, 1991.
191.
Rampton AJ, Griffin RM, Stuart CS, et al: Comparison
of methohexital and propofol for electroconvulsive therapy: Effects on hemodynamic
responses and seizure duration. Anesthesiology 70:412–417, 1989.
192.
Herrick IA, Craen RA, Gelb AW, et al: Propofol
sedation during awake craniotomy for seizures: Patient-controlled administration
versus neurolept analgesia. Anesth Analg 84:1280–1284, 1997.
193.
Drummond JC, Iragui-Madoz VJ, Alksne JF, Kalkman
CJ: Masking of epileptiform activity by propofol during seizure surgery. Anesthesiology
76:652–654, 1992.
194.
Cold GE, Eskesen V, Eriksen H, et al: CBF and
CMRO2
during continuous etomidate infusion supplemented with N2
O
and fentanyl in patients with supratentorial cerebral tumour. A dose-response study.
Acta Anaesthesiol Scand 29:490–491, 1985.
195.
Cold GE, Eskesen V, Eriksen H, Lyon BB: Changes
in CMRO2
, EEG and concentration of etomidate in serum and brain tissue
during craniotomy with continuous etomidate supplemented with N2
O and
fentanyl. Acta Anaesthesiol Scand 30:159–163, 1986.
196.
Kofke WA, Dong ML, Bloom M, et al: Transcranial
Doppler ultrasonography with induction of anesthesia for neurosurgery. J Neurosurg
Anesthesiol 6:89–97, 1994.
197.
Bingham RM, Procaccio F, Prior PF, Hinds CJ:
Cerebral electrical activity influences the effects of etomidate on cerebral perfusion
pressure in traumatic coma. Br J Anaesth 57:843–848, 1985.
198.
Davis DW, Mans AM, Biebuyck JF, Hawkins RA: Regional
brain glucose utilization in rats during etomidate anesthesia. Anesthesiology 64:751–757,
1986.
199.
Modica PA, Tempelhoff R: Intracranial pressure
during induction of anaesthesia and tracheal intubation with etomidate-induced EEG
burst suppression. Can J Anaesth 39:236–241, 1992.
200.
Dearden NM, McDowall DG: Comparison of etomidate
and althesin in the reduction of increased intracranial pressure after head injury.
Br J Anaesth 57:361–368, 1985.
201.
Hoffman WE, Charbel FT, Edelman G, et al: Comparison
of the effect of etomidate and desflurane on brain tissue gases and pH during prolonged
middle cerebral artery occlusion. Anesthesiology 88:1188–1194, 1998.
202.
Levy ML, Aranda M, Zelman V, Giannotta SL: Propylene
glycol toxicity following continuous etomidate infusion for the control of refractory
cerebral edema. Neurosurgery 37:363–371, 1995.
203.
Hoehner PJ, Whitson JT, Kirsch JR, Traystman RJ:
Effect of intracarotid and intraventricular morphine on regional cerebral blood
flow and metabolism in pentobarbital-anesthetized dogs. Anesth Analg 76:266–273,
1993.
204.
Moyer JH, Pontius R, Morris G, Hershberger R:
Effect of morphine and n-allylnormorphine on cerebral hemodynamics and oxygen metabolism.
Circulation 15:379–384, 1957.
205.
Takeshita H, Michenfelder JD, Theye RA: The effects
of morphine and n-allylnormorphine on canine cerebral metabolism and circulation.
Anesthesiology 37:605–612, 1972.
206.
Jobes DR, Kennell E, Bitner R, et al: Effects
of morphine-nitrous oxide anesthesia on cerebral autoregulation. Anesthesiology
42:30–34, 1975.
207.
Murkin JM, Farrar JK, Tweed WA, et al: Relationship
between cerebral blood flow and O2
consumption during high-dose narcotic
anesthesia for cardiac surgery [abstract]. Anesthesiology 63:A44, 1985.
208.
Firestone LL, Gyulai F, Mintun M, et al: Human
brain activity response to fentanyl imaged by positron emission tomography. Anesth
Analg 82:1247–1251, 1996.
209.
McPherson RW, Traystman RJ: Fentanyl and cerebral
vascular responsivity in dogs. Anesthesiology 60:180–186, 1984.
210.
Baughman VL, Hoffman WE, Albrecht RF, Miletich
DJ: Cerebral vascular and metabolic effects of fentanyl and midazolam in young and
aged rats. Anesthesiology 67:314–319, 1987.
211.
Keykhah MM, Smith DS, Carlsson C, et al: Influence
of sufentanil on cerebral metabolism and circulation in the rat. Anesthesiology
63:274–277, 1985.
212.
Michenfelder JD, Theye RA: Effects of fentanyl,
droperidol and Innovar on canine cerebral metabolism and blood flow. Br J Anaesth
43:630–636, 1971.
213.
McPherson RW, Krempasanka E, Eimerl D, Traystman
RJ: Effects of alfentanil on cerebral vascular reactivity in dogs. Br J Anaesth
57:1232–1238, 1985.
214.
Schregel W, Schafermeyer H, Muller C, et al:
The effect of halothane, alfentanil and propofol on blood flow velocity, blood vessel
cross section and blood volume flow in the middle cerebral artery [in German]. Anaesthesist
41:21–26, 1992.
215.
Mayberg TS, Lam AM, Eng CC, et al: The effect
of alfentanil on cerebral blood flow velocity and intracranial pressure during isoflurane-nitrous
oxide anesthesia in humans. Anesthesiology 78:288–294, 1993.
216.
Milde LN, Milde JH, Gallagher WJ: Effects of
sufentanil on cerebral circulation and metabolism in dogs. Anesth Analg 70:138–146,
1990.
217.
Werner C, Hoffman WE, Baughman VL, et al: Effects
of sufentanil on cerebral blood flow, cerebral blood flow velocity, and metabolism
in dogs. Anesth Analg 72:177–181, 1991.
218.
Bunegin L, Albin MS, Ernst PS, Garcia C: Cerebrovascular
responses to sufentanil citrate in primates with and without intracranial hypertension
[abstract]. Anesth Analg 70:S42, 1990.
219.
Murkin JM, Farrar JK, Tweed WA: Sufentanil anaesthesia
reduces cerebral blood flow and cerebral oxygen consumption [abstract]. Can J Anaesth
35:S131, 1988.
220.
Mayer N, Weinstabl C, Podreka I, Spiss CK: Sufentanil
does not increase cerebral blood flow in healthy human volunteers. Anesthesiology
73:240–243, 1990.
221.
Weinstabl C, Mayer N, Spiss CK: Sufentanil decreases
cerebral blood flow velocity in patients with elevated intracranial pressure. Eur
J Anaesthesiol 9:481–484, 1992.
222.
Sheehan PB, Zornow MH, Scheller MS, Peterson BM:
The effects of fentanyl and sufentanil on intracranial pressure and cerebral blood
flow in rabbits with an acute cryogenic brain injury. J Neurosurg Anesthesiol 4:261–267,
1992.
223.
Weinstabl C, Mayer N, Richling B, et al: Effect
of sufentanil on intracranial pressure in neurosurgical patients. Anaesthesia 46:837–840,
1991.
224.
Werner C, Kochs E, Hoffman WE, et al: Sufentanil
does not change cerebral hemodynamics and ICP in head injured patients [abstract].
J Neurosurg Anesthesiol 4:313, 1992.
225.
Jamali S, Ravussin P, Archer D, et al: The effects
of bolus administration of opioids on cerebrospinal fluid pressure in patients with
supratentorial lesions. Anesth Analg 82:600–606, 1996.
226.
Lauer KK, Connolly LA, Schmeling WT: Opioid sedation
does not alter intracranial pressure in head injured patients. Can J Anaesth 44:929–933,
1997.
227.
Marx W, Shah N, Long C, et al: Sufentanil, alfentanil,
and fentanyl: Impact on cerebrospinal fluid pressure in patients with brain tumors.
J Neurosurg Anesthesiol 1:3–7, 1989.
228.
Sperry RJ, Bailey PL, Reichman MV, et al: Fentanyl
and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology
77:416–420, 1992.
229.
Albanese J, Durbec O, Viviand X, et al: Sufentanil
increases intracranial pressure in patients with head trauma. Anesthesiology 79:493–497,
1993.
230.
Werner C, Kochs E, Bause H, et al: Effects of
sufentanil on cerebral hemodynamics and intracranial pressure in patients with brain
injury. Anesthesiology 83:721–726, 1995.
231.
Herrick I, Gelb A, Manninen PH, et al: Effects
of fentanyl, sufentanil, and alfentanil on brain retractor pressure. Anesth Analg
72:359–363, 1991.
232.
From RP, Warner DS, Todd MM, Sokoll MD: Anesthesia
for craniotomy: A double-blind comparison of alfentanil, fentanyl, and sufentanil.
Anesthesiology 73:896–904, 1990.
233.
Bristow A, Shalev D, Rice B, et al: Low-dose
synthetic narcotic infusions for cerebral relaxation during craniotomies. Anesth
Analg 66:413–416, 1987.
234.
Shupak RC, Harp JR: Comparison between high-dose
sufentanil-oxygen and high-dose fentanyl-oxygen for neuroanaesthesia. Br J Anaesth
57:375–381, 1985.
235.
Jung R, Shah N, Reinsel R, et al: Cerebrospinal
fluid pressure in patients with brain tumors: Impact of fentanyl versus alfentanil
during nitrous oxide-oxygen anesthesia. Anesth Analg 71:419–422, 1990.
236.
Moss E: Alfentanil increases intracranial pressure
when intracranial compliance is low. Anaesthesia 47:134–136, 1992.
237.
Markovitz BP, Duhaime A-C, Sutton L, et al: Effects
of alfentanil on intracranial pressure in children undergoing ventriculoperitoneal
shunt revision. Anesthesiology 76:71–76, 1992.
238.
Souter MJ, Andrews PJD, Piper IR, Miller JD:
Effects of alfentanil on cerebral haemodynamics in an experimental model of traumatic
brain injury. Br J Anaesth 79:97–102, 1997.
239.
Warner DS, Hindman BJ, Todd MM, et al: Intracranial
pressure and hemodynamic effects of remifentanil versus alfentanil in patients undergoing
supratentorial craniotomy. Anesth Analg 83:348–353, 1996.
240.
Ostapkovich N, Baker KZ, Fogerty-Mack P, et al:
Cerebral blood flow and CO2
reactivity is similar during remifentanil/N2
O
and fentanyl/N2
O anesthesia. Anesthesiology 89:358–363, 1998.
241.
Paris A, Scholz J, von Knobelsdorff G, et al:
The effect of remifentanil on cerebral blood flow velocity. Anesth Analg 87:569–573,
1998.
242.
Wagner K, Wiloch F, Kochs E, et al: Dose-dependent
regional cerebral blood flow changes during remifentanil infusion in humans. Anesthesiology
94:732–739, 2001.
243.
Lorenz I, Kolbitsch C, Hormann C, et al: The
influence of nitrous oxide and remifentanil on cerebral hemodynamics in conscious
human volunteers. Neuroimage 17:1056–1064, 2002.
244.
Lorenz I, Kolbitsch C, Schocke M, et al: Low-dose
remifentanil increases regional cerebral blood flow and regional cerebral blood volume,
but decreases regional mean transit time and regional cerebrovascular resistance
in volunteers. Br J Anaesth 85:199–204, 2000.
245.
Rockoff MA, Naughton KVH, Shapiro HM, et al:
Cerebral circulatory and metabolic responses to intravenously administered lorazepam.
Anesthesiology 53:215–218, 1980.
246.
Forster A, Juge O, Louis M, Nahory A: Effects
of a specific benzodiazepine antagonist (RO 15-1788) on cerebral blood flow. Anesth
Analg 66:309–313, 1987.
247.
Veselis RA, Reinsel RA, Beattie BJ, et al: Midazolam
changes cerebral blood flow in discrete brain regions: An H2
15
O
positron emission tomography study. Anesthesiology 87:1106–1117, 1997.
248.
Forster A, Juge O, Morel D: Effects of midazolam
on cerebral hemodynamics and cerebral vasomotor responsiveness to carbon dioxide.
J Cereb Blood Flow Metab 3:246–249, 1983.
249.
Fleischer JE, Milde JH, Moyer TP, Michenfelder
JD: Cerebral effects of high-dose midazolam and subsequent reversal with RO 15-1788
in dogs. Anesthesiology 68:234–242, 1988.
250.
Nugent M, Artru AA, Michenfelder JD: Cerebral
metabolic, vascular and protective effects of midazolam maleate. Anesthesiology
56:172–176, 1982.
251.
Wolf J, Friberg L, Jensen J, et al: The effect
of the benzodiazepine antagonist flumazenil on regional cerebral blood flow in human
volunteers. Br J Anaesth 34:628–631, 1990.
252.
Artru AA: Flumazenil reversal of midazolam in
dogs: Dose-related changes in cerebral blood flow, metabolism, EEG, and CSF pressure.
J Neurosurg Anesthesiol 1:46–55, 1989.
253.
Knudsen L, Cold GE, Holdgård HO, et al:
Effects of flumazenil on cerebral blood flow and oxygen consumption after midazolam
anaesthesia for craniotomy. Br J Anaesth 67:277–280, 1991.
254.
Chiolero RL, Ravussin P, Anderes JP, et al: The
effects of midazolam reversal by RO 15-1788 on cerebral perfusion pressure in patients
with severe head injury. Intensive Care Med 14:196–200, 1988.
255.
Kumano H, Shimomura T, Furuya H, et al: Effects
of flumazenil during administration of midazolam on pial vessel diameter and regional
cerebral blood flow in cats. Acta Anaesthesiol Scand 37:567–570, 1993.
256.
Lanier WL, Albrecht RF, Iaizzo PA: Divergence
of intracranial and central venous pressures in lightly anesthetized, tracheally
intubated dogs that move in response to a noxious stimulus. Anesthesiology 84:605–613,
1996.
257.
Sari A, Okuda Y, Takeshita H: The effects of
Thalamonal on cerebral circulation and oxygen consumption in man. Br J Anaesth 44:330–334,
1972.
258.
Misfeldt BB, Jorgensen PB, Spotoft H, Rønde
F: The effects of droperidol and fentanyl on intracranial pressure and cerebral
perfusion. Br J Anaesth 48:963–968, 1976.
259.
Miller R, Tausk HC, Stark DCC: Effect of Innovar,
fentanyl and droperidol on the cerebrospinal fluid pressure in neurosurgical patients.
Can J Anaesth 22:502–508, 1975.
260.
Fitch W, Barker J, Jennett WB, McDowall DG: The
influence of neuroleptanalgesic drugs on cerebrospinal fluid pressure. Br J Anaesth
41:800–806, 1969.
261.
Fukuda S, Murakawa T, Takeshita H, Toda N: Direct
effects of ketamine on isolated canine cerebral and mesenteric arteries. Anesth
Analg 62:553–558, 1983.
262.
Cavazzuti M, Porro CA, Biral GP, et al: Ketamine
effects on local cerebral blood flow and metabolism in the rat. J Cereb Blood Flow
Metab 7:806–811, 1987.
263.
Hougaard K, Hansen A, Brodersen P: The effect
of ketamine on regional cerebral blood flow in man. Anesthesiology 41:562–567,
1974.
264.
Strebel S, Kaufmann M, Maître L, Schaefer
HG: Effects of ketamine on cerebral blood flow velocity in humans. Influence of
pretreatment with midazolam or esmolol. Anaesthesia 50:223–228, 1995.
265.
Crosby G, Crane AM, Sokoloff L: Local changes
in cerebral glucose utilization during ketamine anesthesia. Anesthesiology 56:437–443,
1982.
266.
Vollenweider FX, Leenders KL, Oye I, et al: Differential
psychopathology and patterns of cerebral glucose utilisation produced by (S)- and
(R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur
Neuropsychopharmacol 7:25–38, 1997.
267.
Vollenweider FX, Leenders KL, Scharfetter C, et
al: Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis
using positron emission tomography (PET) and [18
F] fluorodeoxyglucose
(FDG). Eur Neuropsychopharmacol 7:9–24, 1997.
268.
Holcomb HH, Lahti AC, Medoff DR, et al: Sequential
regional cerebral blood flow brain scans using PET with H2
15
O
demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165–172,
2001.
269.
Schmidt A, Ryding E, Akeson J: Racemic ketamine
does not abolish cerebrovascular autoregulation in the pig. Acta Anesthesiol Scand
47:569–575, 2003.
270.
Shapiro HM, Wyte SR, Harris AB: Ketamine anesthesia
in patients with intracranial pathology. Br J Anaesth 44:1200–1204, 1972.
271.
Belopavlovic M, Buchthal A: Modification of ketamine-induced
intracranial hypertension in neurosurgical patients by pretreatment with midazolam.
Acta Anaesthesiol Scand 26:458–462, 1982.
272.
Mayberg TS, Lam AM, Matta BF, et al: Ketamine
does not increase cerebral blood flow velocity or intracranial pressure during isoflurane/nitrous
oxide anesthesia in patients undergoing craniotomy. Anesth Analg 81:84–89,
1995.
273.
Akeson J, Bjorkman S, Messeter K, Rosén
I: Low-dose midazolam antagonizes cerebral metabolic stimulation by ketamine in
the pig. Acta Anaesthesiol Scand 37:525–531, 1993.
274.
Sakai K, Cho S, Fukusaki M, et al: The effects
of propofol with and without ketamine on human cerebral blood flow velocity and CO2
response. Anesth Analg 90:377–382, 2000.
275.
Albanése J, Arnaud S, Rey M, et al: Ketamine
decreases intracranial pressure and electroencephalographic activity in traumatic
brain injury patients during propofol sedation. Anesthesiology 87:1328–1334,
1997.
276.
Sakabe T, Maekawa T, Ishikawa T, Takeshita H:
The effects of lidocaine on canine cerebral metabolism and circulation related to
the electroencephalogram. Anesthesiology 40:433–441, 1974.
277.
Lam AM, Donlon E, Eng CC, et al: The effect of
lidocaine on cerebral blood flow and metabolism during normocapnia and hypocapnia
in humans [abstract]. Anesthesiology 79:A202, 1993.
278.
Bedford RF, Persing JA, Pobereskin L, Butler A:
Lidocaine or thiopental for rapid control of intracranial hypertension? Anesth
Analg 59:435–437, 1980.
279.
Donegan MF, Bedford RF: Intravenously administered
lidocaine prevents intracranial hypertension during endotracheal suctioning. Anesthesiology
52:516–518, 1980.
280.
Tommasino C, Maekawa T, Shapiro HM: Local cerebral
blood flow during lidocaine-induced seizures in rats. Anesthesiology 64:771–777,
1986.
281.
Stoelting RK: Pharmacology and Physiology in
Anesthetic Practice. Philadelphia, JB Lippincott, 1987.
282.
Viegas O, Stoelting RK: Lidocaine in arterial
blood after laryngotracheal administration. Anesthesiology 43:491–493, 1975.
283.
Michenfelder JD, Theye RA: In vivo toxic effects
of halothane on canine cerebral metabolic pathways. Am J Physiol 229:1050–1055,
1975.
284.
Michenfelder JD, Cucchiara RF: Canine cerebral
oxygen consumption during enflurane anesthesia and its modification during induced
seizures. Anesthesiology 40:575–580, 1974.
285.
Todd MM, Drummond JC: A comparison of the cerebrovascular
and metabolic effects of halothane and isoflurane in the cat. Anesthesiology 60:276–282,
1984.
286.
Lutz LJ, Milde JH, Milde LN: The cerebral functional,
metabolic, and hemodynamic effects of desflurane in dogs. Anesthesiology 73:125–131,
1990.
287.
Scheller MS, Tateishi A, Drummond JC, Zornow MH:
The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen,
intracranial pressure, and the electroencephalogram are similar to those of isoflurane
in the rabbit. Anesthesiology 68:548–551, 1988.
288.
Kuramoto T, Oshita S, Takeshita H, Ishikawa T:
Modification of the relationship between cerebral metabolism, blood flow and electroencephalogram
by stimulation during anesthesia in the dog. Anesthesiology 51:211–217, 1979.
289.
Drummond JC, Todd MM, Scheller MS, Shapiro HM:
A comparison of the direct cerebral vasodilating potencies of halothane and isoflurane
in the New Zealand white rabbit. Anesthesiology 65:462–467, 1986.
290.
Lam AM, Mayberg TS, Eng CC, et al: Nitrous oxide-isoflurane
anesthesia causes more cerebral vasodilation than an equipotent dose of isoflurane
in humans. Anesth Analg 78:462–468, 1994.
291.
Kuroda Y, Murakami M, Tsuruta J, et al: Blood
flow velocity of middle cerebral artery during prolonged anesthesia with halothane,
isoflurane, and sevoflurane in humans. Anesthesiology 87:527–532, 1997.
292.
Lenz C, Rebel A, Klaus V, et al: Local cerebral
blood flow, local cerebral glucose utilization, and flow-metabolism coupling during
sevoflurane versus isoflurane anesthesia in rats. Anesthesiology 89:1480–1488,
1998.
293.
Sakabe T, Kuramoto T, Kumagae S, Takeshita H:
Cerebral responses to the addition of nitrous oxide to halothane in man. Br J Anaesth
48:957–962, 1976.
294.
Heath KJ, Gupta S, Matta BF: The effects of sevoflurane
on cerebral hemodynamics during propofol anesthesia. Anesth Analg 85:1284–1287,
1997.
295.
Murphy FL, Kennell EM, Johnstone RE, et al: The
effects of enflurane, isoflurane, and halothane on cerebral blood flow and metabolism
in man [abstract]. Paper presented at the Annual Meeting of the American Society
of Anesthesiologists, October 1974, pp 62–63.
296.
Eintrei C, Leszneiwski W, Carlsson C: Local application
of 133
xenon for measurement of regional cerebral blood flow (rCBF) during
halothane, enflurane, and isoflurane anesthesia in humans. Anesthesiology 63:391–394,
1985.
297.
Ornstein E, Young WL, Ostapkovich N, et al: Comparative
effects of desflurane and isoflurane on cerebral blood flow [abstract]. Anesthesiology
75:A209, 1991.
298.
Johnson J, Sperry RJ, Lam A, Artru A: A phase
III, randomized, open-label study to compare sevoflurane and isoflurane in neurosurgical
patients. Anesth Analg 80:S214, 1995.
299.
Wollman H, Alexander SC, Cohen PJ, et al: Cerebral
circulation of man during halothane anesthesia. Anesthesiology 25:180–184,
1964.
300.
Todd MM, Drummond JC, Shapiro HM: Comparative
cerebrovascular and metabolic effects of halothane, enflurane, and isoflurane [abstract].
Anesthesiology 57:A332, 1982.