Previous Next



REFERENCES

1. Gutstein HB, Akil H: Opioid analgesics. In Hardman JG, Limbird LE (eds): Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed. New York, McGraw-Hill, 2001, pp 569–619.

2. Minami M, Satoh M: Molecular biology of the opioid receptors: structures, functions and distributions. Neurosci Res 23:121–145, 1995.

3. Reinscheid RK, Nothacker HP, Bourson A, et al: Orphanin FQ: A neuropeptide that activates an opioidlike G proteincoupled receptor. Science 270:792–794, 1995.

4. Meunier JC, Mollereau C, Toll L, et al: Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377: 532–535, 1995.

5. Mansour A, Fox CA, Akil H, Watson SJ: Opioid-receptor mRNA expression in the rat CNS: Anatomical and functional implications. Trends Neurosci 18:22–29, 1995.

6. Mogil JS, Pasternak GW: The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415, 2001.

7. Nothacker HP, Reinscheid RK, Mansour A, et al: Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci U S A 93:8677–8682, 1996.

8. Zadina JE, Hackler L, Ge LJ, Kastin AJ: A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386:499–502, 1997.

9. Wandless AL, Smart D, Lambert DG: Fentanyl increases intracellular Ca2+ concentrations in SH-SY5Y cells. Br J Anaesth 76:461–463, 1997.

10. Fukuda K, Kato S, Morikawa H, et al: Functional coupling of the delta-, mu-, and kappa-opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J Neurochem 67:1309–1316, 1996.

11. Shoda T, Fukuda K, Uga H, et al: Activation of mu-opioid receptor induces expression of c-fos and junB via mitogen-activated protein kinase cascade. Anesthesiology 95:983–989, 2001.

12. Mestek A, Hurley JH, Bye LS, et al: The human mu opioid receptor: Modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C. J Neurosci 15:2396–2406, 1995.

13. Pei G, Kieffer BL, Lefkowitz RJ, Freedman NJ: Agonist-dependent phosphorylation of the mouse delta-opioid receptor: involvement of G protein-coupled receptor kinases but not protein kinase C. Mol Pharmacol 48:73–177, 1995.


425


14. Bohn LM, Lefkowitz RJ, Gainetdinov RR, et al: Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498, 1999.

15. Trapaidze N, Keith DE, Cvejic S, et al: Sequestration of the delta opioid receptor. Role of the C terminus in agonist-mediated internalization. J Biol Chem 271:29279–29285, 1996.

16. Gaudriault G, Nouel D, Dal Farra C, et al: Receptor-induced internalization of selective peptidic mu and delta opioid ligands. J Biol Chem 272:2880–2888, 1997.

17. Keith DE, Murray SR, Zaki PA, et al: Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem 271:19021–19024, 1996.

18. Avidor Reiss T, Nevo I, Levy R, et al: Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of G betagamma. J Biol Chem 271:21309–21315, 1996.

19. Fields HL, Heinricher MM, Mason P: Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245, 1991.

20. Pan ZZ, Tershner SA, Fields HL: Cellular mechanism for anti-analgesic action of agonists of the kappa-opioid receptor. Nature 389:382–385, 1997.

21. Trafton JA, Abbadie C, Marchand S, et al: Spinal opioid analgesia: How critical is the regulation of substance P signaling? J Neurosci 19:9642–9653, 1999.

22. Matthies BK, Franklin KB: Formalin pain is expressed in decerebrate rats but not attenuated by morphine. Pain 51:199–206, 1992.

23. Manning BH, Morgan MJ, Franklin KB: Morphine analgesia in the formalin test: Evidence for forebrain and midbrain sites of action. Neuroscience 63:289–294, 1994.

24. Manning BH, Mayer DJ: The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test. J Neurosci 15:8199–8213, 1995.

25. Manning BH, Mayer DJ: The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test. Pain 63:141–52, 1995.

26. Stein C: The control of pain in peripheral tissue by opioids. N Engl J Med 332:1685–1690, 1995.

27. Heard SO, Edwards WT, Ferrari D, et al: Analgesic effect of intraarticular bupivacaine or morphine after arthroscopic knee surgery: A randomized, prospective, double-blind study. Anesth Analg 74:822–826, 1992.

28. Picard PR, Tramer MR, McQuay HJ, Moore RA: Analgesic efficacy of peripheral opioids (all except intra-articular): A qualitative systematic review of randomised controlled trials. Pain 72:309–318, 1997.

29. Kieffer BL: Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20:19–26, 1999.

30. Matthes HW, Maldonado R, Simonin F, et al: Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–823, 1996.

31. Sora I, Takahashi N, Funada M, et al: Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci U S A 94:1544–1549, 1997.

32. Dahan A, Sarton E, Teppema L, et al: Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology 94:824–832, 2001.

33. Sarton E, Teppema LJ, Olievier C, et al: The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception. Anesth Analg 93:1495–1500, 2001.

34. Zhu Y, King MA, Schuller AG, et al: Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24:243–252, 1999.

35. Simonin F, Valverde O, Smadja C, et al: Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J 17:886–897, 1998.

36. Rubinstein M, Mogil JS, Japon M, et al: Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proc Natl Acad Sci U S A 93:3995–4000, 1996.

37. Konig M, Zimmer AM, Steiner H, et al: Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535–538, 1996.

38. Hung CF, Tsai CH, Su MJ: Opioid receptor independent effects of morphine on membrane currents in single cardiac myocytes. Br J Anaesth 81:925–931, 1998.

39. Brau ME, Koch ED, Vogel W, Hempelmann G: Tonic blocking action of meperidine on Na+ and K+ channels in amphibian peripheral nerves. Anesthesiology 92:47–55, 2000.

40. Wagner LE 2nd, Eaton M, Sabnis SS, Gingrich KJ: Meperidine and lidocaine block of recombinant voltage-dependent Na+ channels: Evidence that meperidine is a local anesthetic. Anesthesiology 91:1481–1490, 1999.

41. Takada K, Clark DJ, Davies MF, et al: Meperidine exerts agonist activity at the alpha(2B)-adrenoceptor subtype. Anesthesiology 96:1420–1426, 2002.

42. Yamakura T, Sakimura K, Shimoji K: Direct inhibition of the N-methyl-D-aspartate receptor channel by high concentrations of opioids. Anesthesiology 91:1053–1063, 1999.

43. Nishi M, Houtani T, Noda Y, et al: Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphanin FQ receptor. EMBO J 16:1858–1864, 1997.

44. Koster A, Montkowski A, Schulz S, et al: Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci U S A 96:10444–10449, 1999.

45. Yamamoto T, Nozaki Taguchi N, Kimura S: Analgesic effect of intrathecally administered nociceptin, an opioid receptor-like 1 receptor agonist, in the rat formalin test. Neuroscience 81:249–254, 1997.

46. Grisel JE, Mogil JS, Belknap JK, Grandy DK: Orphanin FQ acts as a supraspinal, but not a spinal, anti-opioid peptide. Neuroreport 7:2125–2129, 1996.

47. Pan Z, Hirakawa N, Fields HL: A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron 26:515–522, 2000.

48. McQuay HJ: Pharmacological treatment of neuralgic and neuropathic pain. Cancer Surv 7:141–159, 1988.

49. Yaksh TL: CNS mechanisms of pain and analgesia. Cancer Surv 7:5–28, 1988.

50. Morgan D, Cook CD, Smith MA, Picker MJ: An examination of the interactions between the antinociceptive effects of morphine and various mu-opioids: the role of intrinsic efficacy and stimulus intensity. Anesth Analg 88:407–413, 1999.

51. Perrot S, Guilbaud G, Kayser V: Differential behavioral effects of peripheral and systemic morphine and naloxone in a rat model of repeated acute inflammation. Anesthesiology 94:870–75, 2001.

52. Kest B, Sarton E, Dahan A: Gender differences in opioid-mediated analgesia: Animal and human studies. Anesthesiology 93:539–547, 2000.

53. Sarton E, Olofsen E, Romberg R, et al: Sex differences in morphine analgesia: An experimental study in healthy volunteers [discussion 6A]. Anesthesiology 93:1245–1254, 2000.

54. Gupta A, Bodin L, Holmstrom B, Berggren L: A systematic review of the peripheral analgesic effects of intraarticular morphine. Anesth Analg 93:761–770, 2001.

55. Kapral S, Gollmann G, Waltl B, et al: Tramadol added to mepivacaine prolongs the duration of an axillary brachial plexus blockade. Anesth Analg 88:853–856, 1999.

56. Nishikawa K, Kanaya N, Nakayama M, et al: Fentanyl improves analgesia but prolongs the onset of axillary brachial plexus block by peripheral mechanism. Anesth Analg 91:384–387, 2000.

57. Bouaziz H, Kinirons BP, Macalou D, et al: Sufentanil does not prolong the duration of analgesia in a mepivacaine brachial plexus block: a dose response study. Anesth Analg 90:383–387, 2000.

58. Reuben SS, Steinberg RB, Lurie SD, Gibson CS: A dose-response study of intravenous regional anesthesia with meperidine. Anesth Analg 88:831–835, 1999.

59. Philbin DM, Rosow CE, Schneider RC, et al: Fentanyl and sufentanil anesthesia revisited: how much is enough? Anesthesiology 73:5–11, 1990.
426


60. Michelsen LG, Salmenpera M, Hug CC Jr, et al: Anesthetic potency of remifentanil in dogs. Anesthesiology 84:865–872, 1996.

61. Steffey EP: Isoflurane-sparing effect of fentanyl in swine. Relevance and importance. Anesthesiology 83:446–448, 1995.

62. McEwan AI, Smith C, Dyar O, et al: Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology 78:864–869, 1993.

63. Glass PS, Gan TJ, Howell S, Ginsberg B: Drug interactions: Volatile anesthetics and opioids. J Clin Anesth 9(Suppl):18–22, 1997.

64. Johansen JW, Schneider G, Windsor AM, Sebel PS: Esmolol potentiates reduction of minimum alveolar isoflurane concentration by alfentanil. Anesth Analg 87:671–676, 1998.

65. Inagaki Y, Tsuda Y: Contribution of the spinal cord to arousal from inhaled anesthesia: Comparison of epidural and intravenous fentanyl on awakening concentration of isoflurane. Anesth Analg 85:1387–1393, 1997.

66. Kissin I, Vinik HR, Castillo R, Bradley EL Jr: Alfentanil potentiates midazolam-induced unconsciousness in subanalgesic doses. Anesth Analg 71:65–69, 1990.

67. Lysakowski C, Dumont L, Pellegrini M, et al: Effects of fentanyl, alfentanil, remifentanil and sufentanil on loss of consciousness and bispectral index during propofol induction of anaesthesia. Br J Anaesth 86:523–527, 2001.

68. Koitabashi T, Johansen JW, Sebel PS: Remifentanil dose/electroencephalogram bispectral response during combined propofol/regional anesthesia. Anesth Analg 94:1530–1533, 2002.

69. Streisand JB, Bailey PL, LeMaire L, Ashburn MA, Tarver SD, Varvel J, Stanley TH: Fentanyl-induced rigidity and unconsciousness in human volunteers. Incidence, duration, and plasma concentrations. Anesthesiology 78:629–634, 1993.

70. Dodson BA, Miller KW: Evidence for a dual mechanism in the anesthetic action of an opioid peptide. Anesthesiology 62:615–620, 1985.

71. Chi OZ, Sommer W, Jasaitis D: Power spectral analysis of EEG during sufentanil infusion in humans. Can J Anaesth 38:275–280, 1991.

72. Long CW, Shah NK, Loughlin C, et al: A comparison of EEG determinants of near-awakening from isoflurane and fentanyl anesthesia. Spectral edge, median power frequency, and delta ratio. Anesth Analg 69:169–173, 1989.

73. Gambus PL, Gregg KM, Shafer SL: Validation of the alfentanil canonical univariate parameter as a measure of opioid effect on the electroencephalogram. Anesthesiology 83:747–756, 1995.

74. Scott JC, Ponganis KV, Stanski DR: EEG quantitation of narcotic effect: The comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 62:234–241, 1985.

75. Bovill JG, Sebel PS, Wauquier A, et al: Influence of high-dose alfentanil anaesthesia on the electroencephalogram: Correlation with plasma concentrations. Br J Anaesth 55(Suppl 2):199–209, 1983.

76. Egan TD, Minto CF, Hermann DJ, et al: Remifentanil versus alfentanil: Comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 84:821–833, 1996.

77. Scott JC, Cooke JE, Stanski DR: Electroencephalographic quantitation of opioid effect: Comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 74:34–42, 1991.

78. Westmoreland CL, Sebel PS, Gropper A: Fentanyl or alfentanil decreases the minimum alveolar anesthetic concentration of isoflurane in surgical patients. Anesth Analg 78:23–28, 1994.

79. Brunner MD, Braithwaite P, Jhaveri R, et al: MAC reduction of isoflurane by sufentanil. Br J Anaesth 72:42–46, 1994.

80. Lang E, Kapila A, Shlugman D, et al: Reduction of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology 85:721–728, 1996.

81. McPherson RW, Mahla M, Johnson R, Traystman RJ: Effects of enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials during fentanyl anesthesia. Anesthesiology 62:626–633, 1985.

82. McPherson RW, Sell B, Traystman RJ: Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology 65:584–589, 1986.

83. Schubert A, Drummond JC, Peterson DO, Saidman LJ: The effect of high-dose fentanyl on human median nerve somatosensory-evoked responses. Can J Anaesth 34:35–40, 1987.

84. Koht A, Schutz W, Schmidt G, et al: Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg 67:435–441, 1988.

85. Pathak KS, Brown RH, Cascorbi HF, Nash CL Jr: Effects of fentanyl and morphine on intraoperative somatosensory cortical-evoked potentials. Anesth Analg 63:833–837, 1985.

86. Samra SK, Krutak Krol H, Pohorecki R, Domino EF: Scopolamine, morphine, and brain-stem auditory evoked potentials in awake monkeys. Anesthesiology 62:437–441, 1985.

87. Samra SK, Lilly DJ, Rush NL, Kirsh MM: Fentanyl anesthesia and human brain-stem auditory evoked potentials. Anesthesiology 61:261–265, 1984.

88. Crabb I, Thornton C, Konieczko KM, et al: Remifentanil reduces auditory and somatosensory evoked responses during isoflurane anaesthesia in a dose-dependent manner. Br J Anaesth 76:795–801, 1996.

89. Chi OZ, Ryterband S, Field C: Visual evoked potentials during thiopentone-fentanyl-nitrous oxide anaesthesia in humans. Can J Anaesth 36:637–640, 1989.

90. Thorogood MC, Armstead WM: Influence of polyethylene glycol superoxide dismutase/catalase on altered opioid-induced pial artery dilation after brain injury. Anesthesiology 84:614–625, 1996.

91. Wahl M: Effects of enkephalins, morphine, and naloxone on pial arteries during perivascular microapplication. J Cereb Blood Flow Metab 5:451–457, 1985.

92. Monitto CL, Kurth CD: The effect of fentanyl, sufentanil, and alfentanil on cerebral arterioles in piglets. Anesth Analg 76:985–989, 1993.

93. Milde LN, Milde JH, Gallagher WJ: Cerebral effects of fentanyl in dogs. Br J Anaesth 63:710–715, 1989.

94. Adler LJ, Gyulai FE, Diehl DJ, et al: Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesth Analg 84:120–126, 1997.

95. Werner C, Hoffman WE, Baughman VL, et al: Effects of sufentanil on cerebral blood flow, cerebral blood flow velocity, and metabolism in dogs. Anesth Analg 72:177–181, 1991.

96. Milde LN, Milde JH, Gallagher WJ: Effects of sufentanil on cerebral circulation and metabolism in dogs. Anesth Analg 70:138–146, 1990.

97. Mayer N, Weinstabl C, Podreka I, Spiss CK: Sufentanil does not increase cerebral blood flow in healthy human volunteers. Anesthesiology 73:240–243, 1990.

98. Mayberg TS, Lam AM, Eng CC, et al: The effect of alfentanil on cerebral blood flow velocity and intracranial pressure during isoflurane-nitrous oxide anesthesia in humans. Anesthesiology 78:288–294, 1993.

99. Hoffman WE, Cunningham F, James MK, et al: Effects of remifentanil, a new short-acting opioid, on cerebral blood flow, brain electrical activity, and intracranial pressure in dogs anesthetized with isoflurane and nitrous oxide. Anesthesiology 79:107–113, 1993.

100. Wagner KJ, Willoch F, Kochs EF, et al: Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: A positron emission tomography study. Anesthesiology 94:732–739, 2001.

101. Ostapkovich ND, Baker KZ, Fogarty-Mack P, et al: Cerebral blood flow and CO2 reactivity is similar during remifentanil/N2 O and fentanyl/N2 O anesthesia. Anesthesiology 89:358–363, 1998.

102. Kofke WA, Garman RH, Tom WC, et al: Alfentanil-induced hypermetabolism, seizure, and histopathology in rat brain. Anesth Analg 75:953–964, 1992.
427


103. Kofke WA, Attaallah AF, Kuwabara H, et al: The neuropathologic effects in rats and neurometabolic effects in humans of large-dose remifentanil. Anesth Analg 94:1229–1236, 2002.

104. Warner DS, Hindman BJ, Todd MM, et al: Intracranial pressure and hemodynamic effects of remifentanil versus alfentanil in patients undergoing supratentorial craniotomy. Anesth Analg 83:348–353, 1996.

105. Jamali S, Ravussin P, Archer D, et al: The effects of bolus administration of opioids on cerebrospinal fluid pressure in patients with supratentorial lesions. Anesth Analg 82:600–606, 1996.

106. Jamali S, Archer D, Ravussin P, et al: The effect of skull-pin insertion on cerebrospinal fluid pressure and cerebral perfusion pressure: influence of sufentanil and fentanyl. Anesth Analg 84:1292–1296, 1997.

107. Lauer KK, Connolly LA, Schmeling WT: Opioid sedation does not alter intracranial pressure in head injured patients. Can J Anaesth 44:929–933, 1997.

108. Marx W, Shah N, Long C, et al: Sufentanil, alfentanil, and fentanyl: Impact on cerebrospinal fluid pressure in patients with brain tumors. J Neurosurg Anesth 1:3, 1989.

109. Markovitz BP, Duhaime Ac, Sutton L, et al: Effects of alfentanil on intracranial pressure in children undergoing ventriculoperitoneal shunt revision. Anesthesiology 76:71–76, 1992.

110. de Nadal M, Munar F, Poca MA, et al: Cerebral hemodynamic effects of morphine and fentanyl in patients with severe head injury: absence of correlation to cerebral autoregulation. Anesthesiology 92:11–9, 2000.

111. Benthuysen JL, Kien ND, Quam DD: Intracranial pressure increases during alfentanil-induced rigidity. Anesthesiology 68:438–440, 1988.

112. Baskin DS, Widmayer MA, Browning JL, et al: Evaluation of delayed treatment of focal cerebral ischemia with three selective kappa-opioid agonists in cats. Stroke 25:2047–2053, 1994.

113. Takahashi H, Traystman RJ, Hashimoto K, et al: Postischemic brain injury is affected stereospecifically by pentazocine in rats. Anesth Analg 85:353–357, 1997.

114. Cole DJ, Shapiro HM, Drummond JC, Zivin JA: Halothane, fentanyl/nitrous oxide, and spinal lidocaine protect against spinal cord injury in the rat. Anesthesiology 70:967–972, 1989.

115. Mayfield KP, D'Alecy LG: Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther 268:683–688, 1994.

116. Bofetiado DM, Mayfield KP, D'Alecy LG: Alkaloid delta agonist BW373U86 increases hypoxic tolerance. Anesth Analg 82:1237–1241, 1996.

117. Charchaflieh J, Cottrell JE, Kass IS: The effect of fentanyl on electrophysiologic recovery of CA 1 pyramidal cells from anoxia in the rat hippocampal slice. Anesth Analg 87:68–71, 1998.

118. Soonthon Brant V, Patel PM, Drummond JC, et al: Fentanyl does not increase brain injury after focal cerebral ischemia in rats. Anesth Analg 88:49–55, 1999.

119. Pokela ML, Ryhanen PT, Koivisto ME, et al: Alfentanil-induced rigidity in newborn infants. Anesth Analg 75:252–257, 1992.

120. Blasco TA, Lee D, Amalric M, et al: The role of the nucleus raphe pontis and the caudate nucleus in alfentanil rigidity in the rat. Brain Res 386:280–286, 1986.

121. Comstock MK, Carter JG, Moyers JR, Stevens WC: Rigidity and hypercarbia associated with high dose fentanyl induction of anesthesia. Anesth Analg 60:362–363, 1981.

122. Benthuysen JL, Smith NT, Sanford TJ, et al: Physiology of alfentanil-induced rigidity. Anesthesiology 64:440–446, 1986.

123. Goldberg M, Ishak S, Garcia C, McKenna J: Postoperative rigidity following sufentanil administration. Anesthesiology 63:199–201, 1985.

124. Bailey PL, Wilbrink J, Zwanikken P, et al: Anesthetic induction with fentanyl. Anesth Analg 64:48–53, 1985.

125. Vankova ME, Weinger MB, Chen DY, et al: Role of central mu, delta-1, and kappa-1 opioid receptors in opioid-induced muscle rigidity in the rat. Anesthesiology 85:574–583, 1996.

126. Mets B: Acute dystonia after alfentanil in untreated Parkinson's disease. Anesth Analg 72:557–558, 1991.

127. Crawford RD, Baskoff JD: Fentanyl-associated delirium in man. Anesthesiology 53:168–169, 1980.

128. Haber GW, Litman RS: Generalized tonic-clonic activity after remifentanil administration. Anesth Analg 93:1532–1533, 2001.

129. Tommasino C, Maekawa T, Shapiro HM, et al: Fentanyl-induced seizures activate subcortical brain metabolism. Anesthesiology 60:283–290, 1984.

130. Parkinson SK, Bailey SL, Little WL, Mueller JB: Myoclonic seizure activity with chronic high-dose spinal opioid administration. Anesthesiology 72:743–745, 1990.

131. Armstrong PJ, Bersten A: Normeperidine toxicity. Anesth Analg 65:536–538, 1986.

132. Gutstein HB, Rubie EA, Mansour A, et al: Opioid effects on mitogen-activated protein kinase signaling cascades. Anesthesiology 87:1118–1126, 1997.

133. Kofke WA, Garman RH, Janosky J, Rose ME: Opioid neurotoxicity: Neuropathologic effects in rats of different fentanyl congeners and the effects of hexamethonium-induced normotension. Anesth Analg 83:141–146, 1996.

134. Sinz EH, Kofke WA, Garman RH: Phenytoin, midazolam, and naloxone protect against fentanyl-induced brain damage in rats. Anesth Analg 91:1443–1449, 2000.

135. Larson MD, Kurz A, Sessler DI, et al: Alfentanil blocks reflex pupillary dilation in response to noxious stimulation but does not diminish the light reflex. Anesthesiology 87:849–855, 1997.

136. Woodall NM, Maryniak JK, Gilston A: Pupillary signs during cardiac surgery. Their use in the prediction of major cerebral deficit following cardiopulmonary bypass. Anaesthesia 44:885–888, 1989.

137. Sessler DI, Olofsson CI, Rubinstein EH: The thermoregulatory threshold in humans during nitrous oxide-fentanyl anesthesia. Anesthesiology 69:357–364, 1988.

138. Kurz A, Go JC, Sessler DI, et al: Alfentanil slightly increases the sweating threshold and markedly reduces the vasoconstriction and shivering thresholds. Anesthesiology 83:293–299, 1995.

139. Macintyre PE, Pavlin EG, Dwersteg JF: Effect of meperidine on oxygen consumption, carbon dioxide production, and respiratory gas exchange in postanesthesia shivering. Anesth Analg 66:751–755, 1987.

140. Casey WF, Smith CE, Katz JM, et al: Intravenous meperidine for control of shivering during caesarean section under epidural anaesthesia. Can J Anaesth 35:128–133, 1988.

141. Ikeda T, Sessler DI, Tayefeh F, et al: Meperidine and alfentanil do not reduce the gain or maximum intensity of shivering. Anesthesiology 88:858–865, 1998.

142. Kurz M, Belani KG, Sessler DI, et al: Naloxone, meperidine, and shivering. Anesthesiology 79:1193–1201, 1993.

143. Greif R, Laciny S, Rajek AM, et al: Neither nalbuphine nor atropine possess special antishivering activity. Anesth Analg 93:620–627, 2001.

144. Sevarino FB, Johnson MD, Lema MJ, et al: The effect of epidural sufentanil on shivering and body temperature in the parturient. Anesth Analg 68:530–533, 1989.

145. Tsai YC, Chu KS: A comparison of tramadol, amitriptyline, and meperidine for postepidural anesthetic shivering in parturients. Anesth Analg 93:1288–1292, 2001.

146. Ko MC, Naughton NN: An experimental itch model in monkeys: characterization of intrathecal morphine-induced scratching and antinociception. Anesthesiology 92:795–805, 2000.

147. Cohen SE, Ratner EF, Kreitzman TR, et al: Nalbuphine is better than naloxone for treatment of side effects after epidural morphine. Anesth Analg 75:747–752, 1992.
428


148. Dunteman E, Karanikolas M, Filos KS: Transnasal butorphanol for the treatment of opioid-induced pruritus unresponsive to antihistamines. J Pain Symptom Manage 12:255–260, 1996.

149. Borgeat A, Stirnemann HR: Ondansetron is effective to treat spinal or epidural morphine-induced pruritus. Anesthesiology 90:432–436, 1999.

150. Colbert S, O'Hanlon DM, Chambers F, Moriarty DC: The effect of intravenous tenoxicam on pruritus in patients receiving epidural fentanyl. Anaesthesia 54:76–80, 1999.

Previous Next