|
|
REFERENCES
1.
Gutstein HB, Akil H: Opioid analgesics. In
Hardman JG, Limbird LE (eds): Goodman and Gilman's The Pharmacological Basis of
Therapeutics, 10th ed. New York, McGraw-Hill, 2001, pp 569–619.
2.
Minami M, Satoh M: Molecular biology of the opioid
receptors: structures, functions and distributions. Neurosci Res 23:121–145,
1995.
3.
Reinscheid RK, Nothacker HP, Bourson A, et al:
Orphanin FQ: A neuropeptide that activates an opioidlike G proteincoupled receptor.
Science 270:792–794, 1995.
4.
Meunier JC, Mollereau C, Toll L, et al: Isolation
and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature
377: 532–535, 1995.
5.
Mansour A, Fox CA, Akil H, Watson SJ: Opioid-receptor
mRNA expression in the rat CNS: Anatomical and functional implications. Trends
Neurosci 18:22–29, 1995.
6.
Mogil JS, Pasternak GW: The molecular and behavioral
pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol
Rev 53:381–415, 2001.
7.
Nothacker HP, Reinscheid RK, Mansour A, et al:
Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl
Acad Sci U S A 93:8677–8682, 1996.
8.
Zadina JE, Hackler L, Ge LJ, Kastin AJ: A potent
and selective endogenous agonist for the mu-opiate receptor. Nature 386:499–502,
1997.
9.
Wandless AL, Smart D, Lambert DG: Fentanyl increases
intracellular Ca2+
concentrations in SH-SY5Y cells. Br J Anaesth 76:461–463,
1997.
10.
Fukuda K, Kato S, Morikawa H, et al: Functional
coupling of the delta-, mu-, and kappa-opioid receptors to mitogen-activated protein
kinase and arachidonate release in Chinese hamster ovary cells. J Neurochem 67:1309–1316,
1996.
11.
Shoda T, Fukuda K, Uga H, et al: Activation of
mu-opioid receptor induces expression of c-fos and junB via mitogen-activated protein
kinase cascade. Anesthesiology 95:983–989, 2001.
12.
Mestek A, Hurley JH, Bye LS, et al: The human
mu opioid receptor: Modulation of functional desensitization by calcium/calmodulin-dependent
protein kinase and protein kinase C. J Neurosci 15:2396–2406, 1995.
13.
Pei G, Kieffer BL, Lefkowitz RJ, Freedman NJ:
Agonist-dependent phosphorylation of the mouse delta-opioid receptor: involvement
of G protein-coupled receptor kinases but not protein kinase C. Mol Pharmacol 48:73–177,
1995.
14.
Bohn LM, Lefkowitz RJ, Gainetdinov RR, et al:
Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498,
1999.
15.
Trapaidze N, Keith DE, Cvejic S, et al: Sequestration
of the delta opioid receptor. Role of the C terminus in agonist-mediated internalization.
J Biol Chem 271:29279–29285, 1996.
16.
Gaudriault G, Nouel D, Dal Farra C, et al: Receptor-induced
internalization of selective peptidic mu and delta opioid ligands. J Biol Chem 272:2880–2888,
1997.
17.
Keith DE, Murray SR, Zaki PA, et al: Morphine
activates opioid receptors without causing their rapid internalization. J Biol Chem
271:19021–19024, 1996.
18.
Avidor Reiss T, Nevo I, Levy R, et al: Chronic
opioid treatment induces adenylyl cyclase V superactivation. Involvement of G betagamma.
J Biol Chem 271:21309–21315, 1996.
19.
Fields HL, Heinricher MM, Mason P: Neurotransmitters
in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245, 1991.
20.
Pan ZZ, Tershner SA, Fields HL: Cellular mechanism
for anti-analgesic action of agonists of the kappa-opioid receptor. Nature 389:382–385,
1997.
21.
Trafton JA, Abbadie C, Marchand S, et al: Spinal
opioid analgesia: How critical is the regulation of substance P signaling? J Neurosci
19:9642–9653, 1999.
22.
Matthies BK, Franklin KB: Formalin pain is expressed
in decerebrate rats but not attenuated by morphine. Pain 51:199–206, 1992.
23.
Manning BH, Morgan MJ, Franklin KB: Morphine analgesia
in the formalin test: Evidence for forebrain and midbrain sites of action. Neuroscience
63:289–294, 1994.
24.
Manning BH, Mayer DJ: The central nucleus of the
amygdala contributes to the production of morphine antinociception in the rat tail-flick
test. J Neurosci 15:8199–8213, 1995.
25.
Manning BH, Mayer DJ: The central nucleus of the
amygdala contributes to the production of morphine antinociception in the formalin
test. Pain 63:141–52, 1995.
26.
Stein C: The control of pain in peripheral tissue
by opioids. N Engl J Med 332:1685–1690, 1995.
27.
Heard SO, Edwards WT, Ferrari D, et al: Analgesic
effect of intraarticular bupivacaine or morphine after arthroscopic knee surgery:
A randomized, prospective, double-blind study. Anesth Analg 74:822–826, 1992.
28.
Picard PR, Tramer MR, McQuay HJ, Moore RA: Analgesic
efficacy of peripheral opioids (all except intra-articular): A qualitative systematic
review of randomised controlled trials. Pain 72:309–318, 1997.
29.
Kieffer BL: Opioids: first lessons from knockout
mice. Trends Pharmacol Sci 20:19–26, 1999.
30.
Matthes HW, Maldonado R, Simonin F, et al: Loss
of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking
the mu-opioid-receptor gene. Nature 383:819–823, 1996.
31.
Sora I, Takahashi N, Funada M, et al: Opiate receptor
knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced
analgesia. Proc Natl Acad Sci U S A 94:1544–1549, 1997.
32.
Dahan A, Sarton E, Teppema L, et al: Anesthetic
potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor
knockout mice. Anesthesiology 94:824–832, 2001.
33.
Sarton E, Teppema LJ, Olievier C, et al: The involvement
of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception.
Anesth Analg 93:1495–1500, 2001.
34.
Zhu Y, King MA, Schuller AG, et al: Retention
of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid
receptor knockout mice. Neuron 24:243–252, 1999.
35.
Simonin F, Valverde O, Smadja C, et al: Disruption
of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral
pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and
attenuates morphine withdrawal. EMBO J 17:886–897, 1998.
36.
Rubinstein M, Mogil JS, Japon M, et al: Absence
of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed
mutagenesis. Proc Natl Acad Sci U S A 93:3995–4000, 1996.
37.
Konig M, Zimmer AM, Steiner H, et al: Pain responses,
anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535–538,
1996.
38.
Hung CF, Tsai CH, Su MJ: Opioid receptor independent
effects of morphine on membrane currents in single cardiac myocytes. Br J Anaesth
81:925–931, 1998.
39.
Brau ME, Koch ED, Vogel W, Hempelmann G: Tonic
blocking action of meperidine on Na+
and K+
channels in amphibian
peripheral nerves. Anesthesiology 92:47–55, 2000.
40.
Wagner LE 2nd, Eaton M, Sabnis SS, Gingrich KJ:
Meperidine and lidocaine block of recombinant voltage-dependent Na+
channels:
Evidence that meperidine is a local anesthetic. Anesthesiology 91:1481–1490,
1999.
41.
Takada K, Clark DJ, Davies MF, et al: Meperidine
exerts agonist activity at the alpha(2B)-adrenoceptor subtype. Anesthesiology 96:1420–1426,
2002.
42.
Yamakura T, Sakimura K, Shimoji K: Direct inhibition
of the N-methyl-D-aspartate receptor channel by high concentrations of opioids.
Anesthesiology 91:1053–1063, 1999.
43.
Nishi M, Houtani T, Noda Y, et al: Unrestrained
nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphanin
FQ receptor. EMBO J 16:1858–1864, 1997.
44.
Koster A, Montkowski A, Schulz S, et al: Targeted
disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and
impairs stress adaptation in mice. Proc Natl Acad Sci U S A 96:10444–10449,
1999.
45.
Yamamoto T, Nozaki Taguchi N, Kimura S: Analgesic
effect of intrathecally administered nociceptin, an opioid receptor-like 1 receptor
agonist, in the rat formalin test. Neuroscience 81:249–254, 1997.
46.
Grisel JE, Mogil JS, Belknap JK, Grandy DK: Orphanin
FQ acts as a supraspinal, but not a spinal, anti-opioid peptide. Neuroreport 7:2125–2129,
1996.
47.
Pan Z, Hirakawa N, Fields HL: A cellular mechanism
for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron
26:515–522, 2000.
48.
McQuay HJ: Pharmacological treatment of neuralgic
and neuropathic pain. Cancer Surv 7:141–159, 1988.
49.
Yaksh TL: CNS mechanisms of pain and analgesia.
Cancer Surv 7:5–28, 1988.
50.
Morgan D, Cook CD, Smith MA, Picker MJ: An examination
of the interactions between the antinociceptive effects of morphine and various mu-opioids:
the role of intrinsic efficacy and stimulus intensity. Anesth Analg 88:407–413,
1999.
51.
Perrot S, Guilbaud G, Kayser V: Differential behavioral
effects of peripheral and systemic morphine and naloxone in a rat model of repeated
acute inflammation. Anesthesiology 94:870–75, 2001.
52.
Kest B, Sarton E, Dahan A: Gender differences
in opioid-mediated analgesia: Animal and human studies. Anesthesiology 93:539–547,
2000.
53.
Sarton E, Olofsen E, Romberg R, et al: Sex differences
in morphine analgesia: An experimental study in healthy volunteers [discussion 6A].
Anesthesiology 93:1245–1254, 2000.
54.
Gupta A, Bodin L, Holmstrom B, Berggren L: A systematic
review of the peripheral analgesic effects of intraarticular morphine. Anesth Analg
93:761–770, 2001.
55.
Kapral S, Gollmann G, Waltl B, et al: Tramadol
added to mepivacaine prolongs the duration of an axillary brachial plexus blockade.
Anesth Analg 88:853–856, 1999.
56.
Nishikawa K, Kanaya N, Nakayama M, et al: Fentanyl
improves analgesia but prolongs the onset of axillary brachial plexus block by peripheral
mechanism. Anesth Analg 91:384–387, 2000.
57.
Bouaziz H, Kinirons BP, Macalou D, et al: Sufentanil
does not prolong the duration of analgesia in a mepivacaine brachial plexus block:
a dose response study. Anesth Analg 90:383–387, 2000.
58.
Reuben SS, Steinberg RB, Lurie SD, Gibson CS:
A dose-response study of intravenous regional anesthesia with meperidine. Anesth
Analg 88:831–835, 1999.
59.
Philbin DM, Rosow CE, Schneider RC, et al: Fentanyl
and sufentanil anesthesia revisited: how much is enough? Anesthesiology 73:5–11,
1990.
60.
Michelsen LG, Salmenpera M, Hug CC Jr, et al:
Anesthetic potency of remifentanil in dogs. Anesthesiology 84:865–872, 1996.
61.
Steffey EP: Isoflurane-sparing effect of fentanyl
in swine. Relevance and importance. Anesthesiology 83:446–448, 1995.
62.
McEwan AI, Smith C, Dyar O, et al: Isoflurane
minimum alveolar concentration reduction by fentanyl. Anesthesiology 78:864–869,
1993.
63.
Glass PS, Gan TJ, Howell S, Ginsberg B: Drug interactions:
Volatile anesthetics and opioids. J Clin Anesth 9(Suppl):18–22, 1997.
64.
Johansen JW, Schneider G, Windsor AM, Sebel PS:
Esmolol potentiates reduction of minimum alveolar isoflurane concentration by alfentanil.
Anesth Analg 87:671–676, 1998.
65.
Inagaki Y, Tsuda Y: Contribution of the spinal
cord to arousal from inhaled anesthesia: Comparison of epidural and intravenous
fentanyl on awakening concentration of isoflurane. Anesth Analg 85:1387–1393,
1997.
66.
Kissin I, Vinik HR, Castillo R, Bradley EL Jr:
Alfentanil potentiates midazolam-induced unconsciousness in subanalgesic doses.
Anesth Analg 71:65–69, 1990.
67.
Lysakowski C, Dumont L, Pellegrini M, et al: Effects
of fentanyl, alfentanil, remifentanil and sufentanil on loss of consciousness and
bispectral index during propofol induction of anaesthesia. Br J Anaesth 86:523–527,
2001.
68.
Koitabashi T, Johansen JW, Sebel PS: Remifentanil
dose/electroencephalogram bispectral response during combined propofol/regional anesthesia.
Anesth Analg 94:1530–1533, 2002.
69.
Streisand JB, Bailey PL, LeMaire L, Ashburn MA,
Tarver SD, Varvel J, Stanley TH: Fentanyl-induced rigidity and unconsciousness in
human volunteers. Incidence, duration, and plasma concentrations. Anesthesiology
78:629–634, 1993.
70.
Dodson BA, Miller KW: Evidence for a dual mechanism
in the anesthetic action of an opioid peptide. Anesthesiology 62:615–620,
1985.
71.
Chi OZ, Sommer W, Jasaitis D: Power spectral analysis
of EEG during sufentanil infusion in humans. Can J Anaesth 38:275–280, 1991.
72.
Long CW, Shah NK, Loughlin C, et al: A comparison
of EEG determinants of near-awakening from isoflurane and fentanyl anesthesia. Spectral
edge, median power frequency, and delta ratio. Anesth Analg 69:169–173, 1989.
73.
Gambus PL, Gregg KM, Shafer SL: Validation of
the alfentanil canonical univariate parameter as a measure of opioid effect on the
electroencephalogram. Anesthesiology 83:747–756, 1995.
74.
Scott JC, Ponganis KV, Stanski DR: EEG quantitation
of narcotic effect: The comparative pharmacodynamics of fentanyl and alfentanil.
Anesthesiology 62:234–241, 1985.
75.
Bovill JG, Sebel PS, Wauquier A, et al: Influence
of high-dose alfentanil anaesthesia on the electroencephalogram: Correlation with
plasma concentrations. Br J Anaesth 55(Suppl 2):199–209, 1983.
76.
Egan TD, Minto CF, Hermann DJ, et al: Remifentanil
versus alfentanil: Comparative pharmacokinetics and pharmacodynamics in healthy
adult male volunteers. Anesthesiology 84:821–833, 1996.
77.
Scott JC, Cooke JE, Stanski DR: Electroencephalographic
quantitation of opioid effect: Comparative pharmacodynamics of fentanyl and sufentanil.
Anesthesiology 74:34–42, 1991.
78.
Westmoreland CL, Sebel PS, Gropper A: Fentanyl
or alfentanil decreases the minimum alveolar anesthetic concentration of isoflurane
in surgical patients. Anesth Analg 78:23–28, 1994.
79.
Brunner MD, Braithwaite P, Jhaveri R, et al: MAC
reduction of isoflurane by sufentanil. Br J Anaesth 72:42–46, 1994.
80.
Lang E, Kapila A, Shlugman D, et al: Reduction
of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology 85:721–728,
1996.
81.
McPherson RW, Mahla M, Johnson R, Traystman RJ:
Effects of enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials
during fentanyl anesthesia. Anesthesiology 62:626–633, 1985.
82.
McPherson RW, Sell B, Traystman RJ: Effects of
thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials
in humans. Anesthesiology 65:584–589, 1986.
83.
Schubert A, Drummond JC, Peterson DO, Saidman LJ:
The effect of high-dose fentanyl on human median nerve somatosensory-evoked responses.
Can J Anaesth 34:35–40, 1987.
84.
Koht A, Schutz W, Schmidt G, et al: Effects of
etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials
and the additive effects of fentanyl and nitrous oxide. Anesth Analg 67:435–441,
1988.
85.
Pathak KS, Brown RH, Cascorbi HF, Nash CL Jr:
Effects of fentanyl and morphine on intraoperative somatosensory cortical-evoked
potentials. Anesth Analg 63:833–837, 1985.
86.
Samra SK, Krutak Krol H, Pohorecki R, Domino EF:
Scopolamine, morphine, and brain-stem auditory evoked potentials in awake monkeys.
Anesthesiology 62:437–441, 1985.
87.
Samra SK, Lilly DJ, Rush NL, Kirsh MM: Fentanyl
anesthesia and human brain-stem auditory evoked potentials. Anesthesiology 61:261–265,
1984.
88.
Crabb I, Thornton C, Konieczko KM, et al: Remifentanil
reduces auditory and somatosensory evoked responses during isoflurane anaesthesia
in a dose-dependent manner. Br J Anaesth 76:795–801, 1996.
89.
Chi OZ, Ryterband S, Field C: Visual evoked potentials
during thiopentone-fentanyl-nitrous oxide anaesthesia in humans. Can J Anaesth 36:637–640,
1989.
90.
Thorogood MC, Armstead WM: Influence of polyethylene
glycol superoxide dismutase/catalase on altered opioid-induced pial artery dilation
after brain injury. Anesthesiology 84:614–625, 1996.
91.
Wahl M: Effects of enkephalins, morphine, and
naloxone on pial arteries during perivascular microapplication. J Cereb Blood Flow
Metab 5:451–457, 1985.
92.
Monitto CL, Kurth CD: The effect of fentanyl,
sufentanil, and alfentanil on cerebral arterioles in piglets. Anesth Analg 76:985–989,
1993.
93.
Milde LN, Milde JH, Gallagher WJ: Cerebral effects
of fentanyl in dogs. Br J Anaesth 63:710–715, 1989.
94.
Adler LJ, Gyulai FE, Diehl DJ, et al: Regional
brain activity changes associated with fentanyl analgesia elucidated by positron
emission tomography. Anesth Analg 84:120–126, 1997.
95.
Werner C, Hoffman WE, Baughman VL, et al: Effects
of sufentanil on cerebral blood flow, cerebral blood flow velocity, and metabolism
in dogs. Anesth Analg 72:177–181, 1991.
96.
Milde LN, Milde JH, Gallagher WJ: Effects of sufentanil
on cerebral circulation and metabolism in dogs. Anesth Analg 70:138–146, 1990.
97.
Mayer N, Weinstabl C, Podreka I, Spiss CK: Sufentanil
does not increase cerebral blood flow in healthy human volunteers. Anesthesiology
73:240–243, 1990.
98.
Mayberg TS, Lam AM, Eng CC, et al: The effect
of alfentanil on cerebral blood flow velocity and intracranial pressure during isoflurane-nitrous
oxide anesthesia in humans. Anesthesiology 78:288–294, 1993.
99.
Hoffman WE, Cunningham F, James MK, et al: Effects
of remifentanil, a new short-acting opioid, on cerebral blood flow, brain electrical
activity, and intracranial pressure in dogs anesthetized with isoflurane and nitrous
oxide. Anesthesiology 79:107–113, 1993.
100.
Wagner KJ, Willoch F, Kochs EF, et al: Dose-dependent
regional cerebral blood flow changes during remifentanil infusion in humans: A positron
emission tomography study. Anesthesiology 94:732–739, 2001.
101.
Ostapkovich ND, Baker KZ, Fogarty-Mack P, et al:
Cerebral blood flow and CO2
reactivity is similar during remifentanil/N2
O
and fentanyl/N2
O anesthesia. Anesthesiology 89:358–363, 1998.
102.
Kofke WA, Garman RH, Tom WC, et al: Alfentanil-induced
hypermetabolism, seizure, and histopathology in rat brain. Anesth Analg 75:953–964,
1992.
103.
Kofke WA, Attaallah AF, Kuwabara H, et al: The
neuropathologic effects in rats and neurometabolic effects in humans of large-dose
remifentanil. Anesth Analg 94:1229–1236, 2002.
104.
Warner DS, Hindman BJ, Todd MM, et al: Intracranial
pressure and hemodynamic effects of remifentanil versus alfentanil in patients undergoing
supratentorial craniotomy. Anesth Analg 83:348–353, 1996.
105.
Jamali S, Ravussin P, Archer D, et al: The effects
of bolus administration of opioids on cerebrospinal fluid pressure in patients with
supratentorial lesions. Anesth Analg 82:600–606, 1996.
106.
Jamali S, Archer D, Ravussin P, et al: The effect
of skull-pin insertion on cerebrospinal fluid pressure and cerebral perfusion pressure:
influence of sufentanil and fentanyl. Anesth Analg 84:1292–1296, 1997.
107.
Lauer KK, Connolly LA, Schmeling WT: Opioid sedation
does not alter intracranial pressure in head injured patients. Can J Anaesth 44:929–933,
1997.
108.
Marx W, Shah N, Long C, et al: Sufentanil, alfentanil,
and fentanyl: Impact on cerebrospinal fluid pressure in patients with brain tumors.
J Neurosurg Anesth 1:3, 1989.
109.
Markovitz BP, Duhaime Ac, Sutton L, et al: Effects
of alfentanil on intracranial pressure in children undergoing ventriculoperitoneal
shunt revision. Anesthesiology 76:71–76, 1992.
110.
de Nadal M, Munar F, Poca MA, et al: Cerebral
hemodynamic effects of morphine and fentanyl in patients with severe head injury:
absence of correlation to cerebral autoregulation. Anesthesiology 92:11–9,
2000.
111.
Benthuysen JL, Kien ND, Quam DD: Intracranial
pressure increases during alfentanil-induced rigidity. Anesthesiology 68:438–440,
1988.
112.
Baskin DS, Widmayer MA, Browning JL, et al: Evaluation
of delayed treatment of focal cerebral ischemia with three selective kappa-opioid
agonists in cats. Stroke 25:2047–2053, 1994.
113.
Takahashi H, Traystman RJ, Hashimoto K, et al:
Postischemic brain injury is affected stereospecifically by pentazocine in rats.
Anesth Analg 85:353–357, 1997.
114.
Cole DJ, Shapiro HM, Drummond JC, Zivin JA: Halothane,
fentanyl/nitrous oxide, and spinal lidocaine protect against spinal cord injury in
the rat. Anesthesiology 70:967–972, 1989.
115.
Mayfield KP, D'Alecy LG: Delta-1 opioid agonist
acutely increases hypoxic tolerance. J Pharmacol Exp Ther 268:683–688, 1994.
116.
Bofetiado DM, Mayfield KP, D'Alecy LG: Alkaloid
delta agonist BW373U86 increases hypoxic tolerance. Anesth Analg 82:1237–1241,
1996.
117.
Charchaflieh J, Cottrell JE, Kass IS: The effect
of fentanyl on electrophysiologic recovery of CA 1 pyramidal cells from anoxia in
the rat hippocampal slice. Anesth Analg 87:68–71, 1998.
118.
Soonthon Brant V, Patel PM, Drummond JC, et al:
Fentanyl does not increase brain injury after focal cerebral ischemia in rats.
Anesth Analg 88:49–55, 1999.
119.
Pokela ML, Ryhanen PT, Koivisto ME, et al: Alfentanil-induced
rigidity in newborn infants. Anesth Analg 75:252–257, 1992.
120.
Blasco TA, Lee D, Amalric M, et al: The role
of the nucleus raphe pontis and the caudate nucleus in alfentanil rigidity in the
rat. Brain Res 386:280–286, 1986.
121.
Comstock MK, Carter JG, Moyers JR, Stevens WC:
Rigidity and hypercarbia associated with high dose fentanyl induction of anesthesia.
Anesth Analg 60:362–363, 1981.
122.
Benthuysen JL, Smith NT, Sanford TJ, et al: Physiology
of alfentanil-induced rigidity. Anesthesiology 64:440–446, 1986.
123.
Goldberg M, Ishak S, Garcia C, McKenna J: Postoperative
rigidity following sufentanil administration. Anesthesiology 63:199–201, 1985.
124.
Bailey PL, Wilbrink J, Zwanikken P, et al: Anesthetic
induction with fentanyl. Anesth Analg 64:48–53, 1985.
125.
Vankova ME, Weinger MB, Chen DY, et al: Role
of central mu, delta-1, and kappa-1 opioid receptors in opioid-induced muscle rigidity
in the rat. Anesthesiology 85:574–583, 1996.
126.
Mets B: Acute dystonia after alfentanil in untreated
Parkinson's disease. Anesth Analg 72:557–558, 1991.
127.
Crawford RD, Baskoff JD: Fentanyl-associated
delirium in man. Anesthesiology 53:168–169, 1980.
128.
Haber GW, Litman RS: Generalized tonic-clonic
activity after remifentanil administration. Anesth Analg 93:1532–1533, 2001.
129.
Tommasino C, Maekawa T, Shapiro HM, et al: Fentanyl-induced
seizures activate subcortical brain metabolism. Anesthesiology 60:283–290,
1984.
130.
Parkinson SK, Bailey SL, Little WL, Mueller JB:
Myoclonic seizure activity with chronic high-dose spinal opioid administration.
Anesthesiology 72:743–745, 1990.
131.
Armstrong PJ, Bersten A: Normeperidine toxicity.
Anesth Analg 65:536–538, 1986.
132.
Gutstein HB, Rubie EA, Mansour A, et al: Opioid
effects on mitogen-activated protein kinase signaling cascades. Anesthesiology 87:1118–1126,
1997.
133.
Kofke WA, Garman RH, Janosky J, Rose ME: Opioid
neurotoxicity: Neuropathologic effects in rats of different fentanyl congeners and
the effects of hexamethonium-induced normotension. Anesth Analg 83:141–146,
1996.
134.
Sinz EH, Kofke WA, Garman RH: Phenytoin, midazolam,
and naloxone protect against fentanyl-induced brain damage in rats. Anesth Analg
91:1443–1449, 2000.
135.
Larson MD, Kurz A, Sessler DI, et al: Alfentanil
blocks reflex pupillary dilation in response to noxious stimulation but does not
diminish the light reflex. Anesthesiology 87:849–855, 1997.
136.
Woodall NM, Maryniak JK, Gilston A: Pupillary
signs during cardiac surgery. Their use in the prediction of major cerebral deficit
following cardiopulmonary bypass. Anaesthesia 44:885–888, 1989.
137.
Sessler DI, Olofsson CI, Rubinstein EH: The thermoregulatory
threshold in humans during nitrous oxide-fentanyl anesthesia. Anesthesiology 69:357–364,
1988.
138.
Kurz A, Go JC, Sessler DI, et al: Alfentanil
slightly increases the sweating threshold and markedly reduces the vasoconstriction
and shivering thresholds. Anesthesiology 83:293–299, 1995.
139.
Macintyre PE, Pavlin EG, Dwersteg JF: Effect
of meperidine on oxygen consumption, carbon dioxide production, and respiratory gas
exchange in postanesthesia shivering. Anesth Analg 66:751–755, 1987.
140.
Casey WF, Smith CE, Katz JM, et al: Intravenous
meperidine for control of shivering during caesarean section under epidural anaesthesia.
Can J Anaesth 35:128–133, 1988.
141.
Ikeda T, Sessler DI, Tayefeh F, et al: Meperidine
and alfentanil do not reduce the gain or maximum intensity of shivering. Anesthesiology
88:858–865, 1998.
142.
Kurz M, Belani KG, Sessler DI, et al: Naloxone,
meperidine, and shivering. Anesthesiology 79:1193–1201, 1993.
143.
Greif R, Laciny S, Rajek AM, et al: Neither nalbuphine
nor atropine possess special antishivering activity. Anesth Analg 93:620–627,
2001.
144.
Sevarino FB, Johnson MD, Lema MJ, et al: The
effect of epidural sufentanil on shivering and body temperature in the parturient.
Anesth Analg 68:530–533, 1989.
145.
Tsai YC, Chu KS: A comparison of tramadol, amitriptyline,
and meperidine for postepidural anesthetic shivering in parturients. Anesth Analg
93:1288–1292, 2001.
146.
Ko MC, Naughton NN: An experimental itch model
in monkeys: characterization of intrathecal morphine-induced scratching and antinociception.
Anesthesiology 92:795–805, 2000.
147.
Cohen SE, Ratner EF, Kreitzman TR, et al: Nalbuphine
is better than naloxone for treatment of side effects after epidural morphine. Anesth
Analg 75:747–752, 1992.
148.
Dunteman E, Karanikolas M, Filos KS: Transnasal
butorphanol for the treatment of opioid-induced pruritus unresponsive to antihistamines.
J Pain Symptom Manage 12:255–260, 1996.
149.
Borgeat A, Stirnemann HR: Ondansetron is effective
to treat spinal or epidural morphine-induced pruritus. Anesthesiology 90:432–436,
1999.
150.
Colbert S, O'Hanlon DM, Chambers F, Moriarty DC:
The effect of intravenous tenoxicam on pruritus in patients receiving epidural fentanyl.
Anaesthesia 54:76–80, 1999.