Previous Next



REFERENCES

1. Pagel PS, Warltier DC: Anesthetics and left ventricular function. In Warltier DC (ed): Ventricular function. Baltimore, Williams & Wilkins, 1995, pp 213–252.

2. Goldberg AH, Ullrick WC: Effects of halothane on isometric contractions of isolated heart muscle. Anesthesiology 28:838–845, 1967.

3. Sugai N, Shimosato S, Etsten BE: Effect of halothane on force-velocity relations and dynamic stiffness of isolated heart muscle. Anesthesiology 29:267–274, 1968.

4. Shimosato S, Li TH, Etsten B: Ventricular function during halothane anesthesia in closed chest dog. Circ Res 12:63–75, 1963.

5. Deutsch S, Linde HW, Dripps RD, Price HL: Circulatory and respiratory actions of halothane in normal man. Anesthesiology 23:631–638, 1962.

6. Eger EI II, Smith NT, Stoelting RK, et al: Cardiovascular effects of halothane in man. Anesthesiology 32:396–409, 1970.

7. Severinghaus JW, Cullen SC: Depression of myocardium and body oxygen consumption with Fluothane. Anesthesiology 19:165–177, 1958.

8. Sonntag H, Donath U, Hillebrand W, et al: Left ventricular function in conscious man and during halothane anesthesia. Anesthesiology 48:320–324, 1978.

9. Shimosato S, Sugai N, Iwatsuki N, Etsten BE: The effect of Ethrane on cardiac muscle mechanics. Anesthesiology 30:513–518, 1969.

10. Kemmotsu O, Hashimoto Y, Shimosato S: Inotropic effects of isoflurane on mechanics of contraction in isolated cat papillary muscles from normal and failing hearts. Anesthesiology 39:470–477, 1973.


217


11. Calverley RK, Smith NT, Prys-Roberts C, et al: Cardiovascular effects of enflurane anesthesia during controlled ventilation in man. Anesth Analg 57:619–628, 1978.

12. Stevens WC, Cromwell TH, Halsey MJ, et al: The cardiovascular effects of a new inhalation anesthetic, Forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 35:8–16, 1971.

13. Horan BF, Prys-Roberts C, Hamilton WK, Roberts JG: Haemodynamic responses to enflurane anaesthesia and hypovolaemia in the dog, and their modification by propranolol. Br J Anaesth 49:1189–1197, 1977.

14. Merin RG, Kumazawa T, Luka NL: Myocardial function and metabolism in the conscious dog and during halothane anesthesia. Anesthesiology 44:402–415, 1976.

15. Merin RG, Kumazawa T, Luka NL: Enflurane depresses myocardial function, perfusion, and metabolism in the dog. Anesthesiology 45:501–507, 1976.

16. Pagel PS, Kampine JP, Schmeling WT, Warltier DC: Comparison of the systemic and coronary hemodynamic actions of desflurane, isoflurane, halothane, and enflurane in the chronically instrumented dog. Anesthesiology 74:539–551, 1991.

17. Van Trigt P, Christian CC, Fagraeus L, et al: The mechanism of halothane-induced myocardial depression: Altered diastolic mechanics versus impaired contractility. J Thorac Cardiovasc Surg 85:832–838, 1983.

18. Horan BF, Prys-Roberts C, Roberts JG, et al: Haemodynamic responses to isoflurane anesthesia and hypovolaemia in the dog, and their modification by propranolol. Br J Anaesth 49:1179–1187, 1977.

19. Merin RG: Are the myocardial functional and metabolic effects of isoflurane really different from those of halothane and enflurane? Anesthesiology 55:398–408, 1981.

20. Pagel PS, Kampine JP, Schmeling WT, Warltier DC: Comparison of end-systolic pressure-length relations and preload recruitable stroke work as indices of myocardial contractility in the conscious and anesthetized, chronically instrumented dog. Anesthesiology 73:278–290, 1990.

21. Pagel PS, Nijhawan N, Warltier DC: Quantitation of volatile anesthetic-induced depression of myocardial contractility using a single beat index derived from maximal ventricular power. J Cardiothorac Vasc Anesth 7:688–695, 1993.

22. Graves CL, McDermott RW, Bidwai A: Cardiovascular effects of isoflurane in surgical patients. Anesthesiology 41:486–489, 1974.

23. Tarnow J, Bruckner JB, Eberlein HJ, et al: Haemodynamics and myocardial oxygen consumption during isoflurane (Forane) anaesthesia in geriatric patients. Br J Anaesth 48:669–675, 1976.

24. Hysing ES, Chelly JE, Jacobson L, et al: Cardiovascular effects of acute changes in extracellular ionized calcium concentration induced by citrate and CaCl2 infusions in chronically instrumented dogs, conscious and during enflurane, halothane, and isoflurane anesthesia. Anesthesiology 72:100–104, 1990.

25. Makela VHM, Kapur PA: Amrinone and verapamilpropranolol induced cardiac depression during isoflurane anesthesia in dogs. Anesthesiology 66:792–797, 1987.

26. Merin RG, Chelly JE, Hysing ES, et al: Cardiovascular effects of and interaction between calcium blocking drugs and anesthetics in chronically instrumented dogs. IV. Chronically administered oral verapamil and halothane, enflurane, and isoflurane. Anesthesiology 66:140–146, 1987.

27. Pagel PS, Hettrick DA, Warltier DC: Left ventricular mechanical consequences of dihydropyridine calcium channel modulation in conscious and anesthetized chronically instrumented dogs. Anesthesiology 81:190–208, 1994.

28. Denlinger JK, Kaplan JA, Lecky JH, Wollman H: Cardiovascular responses to calcium administered intravenously to man during halothane anesthesia. Anesthesiology 42:390–397, 1975.

29. Price HL: Calcium reverses myocardial depression caused by halothane: Site of action. Anesthesiology 41:576–579, 1974.

30. Pagel PS, Kampine JP, Schmeling WT, Warltier DC: Reversal of volatile anesthetic-induced depression of myocardial contractility by extracellular calcium also enhances left ventricular diastolic function. Anesthesiology 78:141–154, 1993.

31. Makela VHM, Kapur PA: Amrinone blunts cardiac depression caused by enflurane or isoflurane anesthesia in the dog. Anesth Analg 66:215–221, 1987.

32. Pagel PS, Hettrick DA, Warltier DC: Amrinone enhances myocardial contractility and improves left ventricular diastolic function in conscious and anesthetized chronically instrumented dogs. Anesthesiology 79:753–765, 1993.

33. Pagel PS, Harkin CP, Hettrick DA, Warltier DC: Levosimendan (OR-1259), a myofilament calcium sensitizer, enhances myocardial contractility but does not alter isovolumic relaxation in conscious and anesthetized dogs. Anesthesiology 81:974–987, 1994.

34. Eger EI II: New inhaled anesthetics. Anesthesiology 80:906–922, 1994.

35. Merin RG, Bernard JM, Doursout MF, et al: Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology 74:568–574, 1991.

36. Weiskopf RB, Holmes MA, Eger EI II, et al: Cardiovascular effects of I653 in swine. Anesthesiology 69:303–309, 1988.

37. Weiskopf RB, Cahalan MK, Eger EI II, et al: Cardiovascular actions of desflurane in normocarbic volunteers. Anesth Analg 73:143–156, 1991.

38. Cahalan MK, Weiskopf RB, Eger EI II, et al: Hemodynamic effects of desflurane/nitrous oxide anesthesia in volunteers. Anesth Analg 73:157–164, 1991.

39. Pagel PS, Kampine JP, Schmeling WT, Warltier DC: Influence of volatile anesthetics on myocardial contractility in vivo: Desflurane versus isoflurane. Anesthesiology 74:900–907, 1991.

40. Pagel PS, Kampine JP, Schmeling WT, Warltier DC: Evaluation of myocardial contractility in the chronically instrumented dog with intact autonomic nervous system function: Effects of desflurane and isoflurane. Acta Anaesthesiol Scand 37:203–210, 1993.

41. Hettrick DA, Pagel PS, Warltier DC: Desflurane, sevoflurane, and isoflurane impair canine left ventricular-arterial coupling and mechanical efficiency. Anesthesiology 85:403–413, 1996.

42. Ebert TJ, Muzi M: Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers: A comparison with isoflurane. Anesthesiology 79:444–453, 1993.

43. Weiskopf RB, Eger EI II, Noorani M, Daniel M: Fentanyl, esmolol, and clonidine blunt the transient cardiovascular stimulation induced by desflurane in humans. Anesthesiology 81:1350–1355, 1994.

44. Weiskopf RB, Moore MA, Eger EI II, et al: Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than rapid increase in isoflurane concentration in humans. Anesthesiology 80:1035–1045, 1994.

45. Weiskopf RB, Eger EI II, Daniel M, Noorani M: Cardiovascular stimulation induced by rapid increases in desflurane concentration in humans results from activation of tracheopulmonary and systemic receptors. Anesthesiology 83:1173–1178, 1995.

46. Bernard JM, Wouters PF, Doursout M-F, et al: Effects of sevoflurane and isoflurane on cardiac and coronary dynamics in chronically instrumented dogs. Anesthesiology 72:659–662, 1990.

47. Harkin CP, Pagel PS, Kersten JR, et al: Direct negative inotropic and lusitropic effects of sevoflurane. Anesthesiology 81:156–167, 1994.

48. Lerman J, Oyston JP, Gallagher TM, et al: The minumum alveolar concentration (MAC) and hemodynamic effects of halothane, isoflurane, and sevoflurane in newborn swine. Anesthesiology 73:717–721, 1990.

49. Kikura M, Ikeda K: Comparison of effects of sevoflurane-nitrous oxide and enflurane-nitrous oxide on myocardial contractility in humans: Load-independent and noninvasive assessment with transesophageal echocardiography. Anesthesiology 79:235–243, 1993.
218


50. Kemmotsu O, Hashimoto Y, Shimosato S: The effects of fluroxene and enflurane on contractile performance of isolated papillary muscles from failing hearts. Anesthesiology 40:252–260, 1974.

51. Lowenstein E, Foex P, Francis CM, et al: Regional ischemic ventricular dysfunction in myocardium supplied by a narrowed coronary artery with increasing halothane concentration in the dog. Anesthesiology 55:349–359, 1981.

52. Kissin I, Thomson CT, Smith LR: Effects of halothane on contractile function of ischemic myocardium. J Cardiovasc Pharmacol 5:438–442, 1983.

53. Vivien B, Hanouz J-L, Gueugniaud P-Y, et al: Myocardial effects of halothane and isoflurane in hamsters with hypertrophic cardiomyopathy. Anesthesiology 87:1406–1416, 1997.

54. Prys-Roberts C, Roberts JG, Foex P, et al: Interaction of anesthesia, beta-receptor blockade, and blood loss in dogs with induced myocardial infarction. Anesthesiology 45:326–329, 1976.

55. Davis RF, DeBoer LW, Rude RE, et al: The effect of halothane anesthesia on myocardial necrosis, hemodynamic performance, and regional myocardial blood flow in dogs following coronary artery occlusion. Anesthesiology 59:402–411, 1983.

56. Kersten JR, Schmeling TJ, Pagel PS, et al: Isoflurane mimics ischemic preconditioning via activation of KATP channels. Reduction of myocardial infarct size with an acute memory phase. Anesthesiology 87:361–370, 1997.

57. Van Ackern K, Vetter HO, Bruckner UB, et al: Effects of enflurane on myocardial ischaemia in the dog. Br J Anaesth 57:497–504, 1985.

58. Kanaya N, Fujita S: The effects of isoflurane on regional myocardial contractility and metabolism in "stunned" myocardium in acutely instrumented dogs. Anesth Analg 79:447–454, 1994.

59. Lochner A, Harper IS, Salie R, et al: Halothane protects the isolated rat myocardium against excessive total intracellular calcium and structural damage during ischemia and reperfusion. Anesth Analg 79:226–233, 1994.

60. Warltier DC, Al-Wathiqui MH, Kampine JP, Schmeling WT: Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology 69:552–565, 1988.

61. Pagel PS, Hettrick DA, Lowe D, et al: Desflurane and isoflurane exert modest beneficial actions on left ventricular diastolic function during myocardial ischemia in dogs. Anesthesiology 83:1021–1035, 1995.

62. Reiz S, Balfors E, Gustavsson B, et al: Effects of halothane on coronary haemodynamics and myocardial metabolism in patients with ischaemic heart disease and heart failure. Acta Anaesthesiol Scand 26:133–138, 1982.

63. Reiz S, Balfors E, Sorensen MB, et al: Isoflurane: A powerful coronary vasodilator in patients with coronary artery disease. Anesthesiology 59:91–97, 1983.

64. Reiz S, Ostman M: Regional coronary hemodynamics during isoflurane-nitrous oxide anesthesia in patients with ischemic heart disease. Anesth Analg 64:570–576, 1985.

65. Pagel PS, Lowe D, Hettrick DA, et al: Isoflurane, but not halothane, improves indices of diastolic performance in dogs with rapid ventricular, pacing-induced cardiomyopathy. Anesthesiology 85:644–654, 1996.

66. Pagel PS, Hettrick DA, Kersten JR, et al: Isoflurane and halothane do not alter the enhanced afterload sensitivity of left ventricular relaxation in dogs with pacing-induced cardiomyopathy. Anesthesiology 87:952–962, 1997.

67. Rusy BF, Komai H: Anesthetic depression of myocardial contractility: A review of possible mechanisms. Anesthesiology 67:745–766, 1987.

68. Lynch C III: Myocardial excitation-contraction coupling. In Yaksh TL, Lynch C III, Zapol WM, et al (eds): Anesthesia: Biologic Foundations. Philadelphia, Lippincott-Raven, 1997, pp 1041–1079.

69. Bosnjak ZJ, Aggarwal A, Turner LA, et al: Differential effects of halothane, enflurane, and isoflurane on Ca2+ transients and papillary muscle tension in guinea pigs. Anesthesiology 76:123–131, 1992.

70. Bosnjak ZJ, Kampine JP: Effects of halothane on transmembrane potentials, Ca2+ transients, and papillary muscle tension in the cat. Am J Physiol 251:H374–H381, 1986.

71. Eskinder H, Rusch NJ, Supan FD, et al: The effects of volatile anesthetics on L- and T-type calcium channel currents in canine cardiac Purkinje cells. Anesthesiology 74:919–926, 1991.

72. Lynch C III: Effects of halothane and isoflurane on isolated human ventricular myocardium. Anesthesiology 68:429–432, 1988.

73. Hatakeyama N, Momose Y, Ito Y: Effects of sevoflurane on contractile responses and electrophysiologic properties in canine single cardiac myocytes. Anesthesiology 82:559–565, 1995.

74. Bosnjak ZJ, Supan FD, Rusch NJ: The effects of halothane, enflurane, and isoflurane on calcium current in isolated canine ventricular cells. Anesthesiology 74:340–345, 1991.

75. Lynch C III: Differential depression of myocardial contractility by halothane and isoflurane in vitro. Anesthesiology 64:620–631, 1986.

76. Blanck TJJ, Runge S, Stevenson RL: Halothane decreases calcium channel antagonist binding to cardiac membranes. Anesth Analg 67:1032–1035, 1988.

77. Drenger B, Quigg M, Blanck TJJ: Volatile anesthetics depress calcium channel blocker binding to bovine cardiac sarcolemma. Anesthesiology 74:155–165, 1991.

78. Hoehner PJ, Quigg MC, Blanck TJJ: Halothane depresses D600 binding to bovine heart sarcolemma. Anesthesiology 75:1019–1024, 1991.

79. Katsuoka M, Kobayashi K, Ohnishi ST: Volatile anesthetics decrease calcium content of isolated myocytes. Anesthesiology 70:954–960, 1989.

80. Katsuoka M, Ohnishi ST: Inhalation anesthetics decrease calcium content of cardiac sarcoplasmic reticulum. Br J Anaesth 62:669–673, 1989.

81. Komai H, Rusy BF: Direct effect of halothane and isoflurane on the function of the sarcoplasmic reticulum in intact rabbit atria. Anesthesiology 72:694–698, 1990.

82. Wheeler DM, Katz A, Rice RT, Hansford RG: Volatile anesthetic effects on sarcoplasmic reticulum Ca content and sarcolemmal Ca flux in isolated rat cardiac cell suspensions. Anesthesiology 80:372–382, 1994.

83. Wilde DW, Davidson BA, Smith MD, Knight PR: Effects of isoflurane and enflurane on intracellular Ca2+ mobilization in isolated cardiac myocytes. Anesthesiology 79:73–82, 1993.

84. Luk HN, Lin CI, Chang CL, Lee AR: Differential inotropic effects of halothane and isoflurane in dog ventricular tissues. Eur J Pharmacol 136:409–413, 1987.

85. Lynch C III, Vogel S, Sperelakis N: Halothane depression of myocardial slow action potentials. Anesthesiology 55:360–368, 1981.

86. Wheeler DM, Rice RT, Lakatta EG: The action of halothane on spontaneous contractile waves and stimulated contractions in isolated rat and dog heart cells. Anesthesiology 72:911–920, 1990.

87. Lynch C III, Frazer MJ: Anesthetic alteration of ryanodine binding by cardiac calcium release channels. Biochim Biophys Acta 1194:109–117, 1994.

88. Connelly TJ, Coronado R: Activation of the Ca2+ release channel of cardiac sarcoplasmic reticulum by volatile anesthetics. Anesthesiology 81:459–469, 1994.

89. Casella ES, Suite ND, Fisher YI, Blanck TJ: The effect ofvolatile anesthetics on the pH dependence of calcium uptake by cardiac sarcoplasmic reticulum. Anesthesiology 67:386–390, 1987.

90. Frazer MJ, Lynch C III: Halothane and isoflurane effects on Ca2+ fluxes of isolated myocardial sarcoplasmic reticulum. Anesthesiology 77:316–323, 1992.

91. Hannon JD, Cody MJ: Effects of volatile anesthetics in sarcolemmal calcium transport and sarcoplasmic reticulum calcium content in isolated myocytes. Anesthesiology 96:1457–1464, 2002.

92. Miao N, Lynch C III: Effect of temperature on volatile anesthetic depression of myocardial contractions. Anesth Analg 76:366–731, 1993.

93. Baum VC, Wetzel GT: Sodium-calcium exchange in neonatal myocardium: Reversible inhibition by halothane. Anesth Analg 78:1105–1109, 1994.
219


94. Haworth RA, Goknur AB, Berkoff HA: Inhibition of Na-Ca exchange by general anesthetics. Circ Res 65:1021–1028, 1989.

95. Haworth RA, Goknur AB: Inhibition of sodium/calcium exchange and calcium channels of heart cells by volatile anesthetics. Anesthesiology 82:1255–1265, 1995.

96. Baum VC, Klitzner TS: Excitation-contraction coupling in neonatal myocardium: Effects of halothane and isoflurane. Dev Pharmacol Ther 16:99–107, 1991.

97. Su JY, Kerrick WG: Effects of halothane on Ca2+ activated tension development in mechanically disrupted rabbit myocardial fibers. Pflugers Arch 375:111–117, 1978.

98. Murat I, Ventura-Clapier R, Vassort G: Halothane, enflurane, and isoflurane decrease calcium sensitivity and maximal force in detergent-treated rat cardiac fibers. Anesthesiology 69:892–899, 1988.

99. Tavernier BM, Adnet PJ, Imbenotte M, et al: Halothane and isoflurane decrease calcium sensitivity and maximal force in human skinned cardiac fibers. Anesthesiology 80:625–633, 1994.

100. Merin RG, Kumazawa T, Honig CR: Reversible interaction between halothane and Ca2+ on cardiac actomyosin adenosine triphosphatase: Mechanism and significance. J Pharmacol Exp Ther 190:1–14, 1974.

101. Pask HT, England PJ, Prys-Roberts C: Effects of volatile inhalational anesthetic agents on isolated bovine cardiac myofibrillar ATPase. J Mol Cell Cardiol 13:293–301, 1981.

102. Murat I, Lechene P, Ventura-Clapier R: Effects of volatile anesthetics on mechanical properties of rat cardiac skinned fibers. Anesthesiology 73:73–81, 1990.

103. Hannon JD, Cody MJ, Housmans PR: Effects of isoflurane on intracellular calcium and myocardial crossbridge kinetics in tetanized papillary muscles. Anesthesiology 94:856–861, 2001.

104. Blanck TJJ, Chiancone E, Salviati G, et al: Halothane does not alter Ca2+ affinity of troponin C. Anesthesiology 76:100–105, 1992.

105. Housmans PR: Negative inotropy of halogenated anesthetics in ferret ventricular myocardium. Am J Physiol 259:H827–H834, 1990.

106. Baele P, Housmans PR: The effects of halothane, enflurane, and isoflurane on the length-tension relation of the isolated papillary muscle of the ferret. Anesthesiology 74:281–291, 1991.

107. Davies LA, Gibson CN, Boyett MR, et al: Effects of isoflurane, sevoflurane, and halothane on myofilament Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in rat ventricular myocytes. Anesthesiology 93:1034–1044, 2000.

108. Jiang Y, Julian FJ: Effects of halothane on [Ca2+ ]i transient, SR Ca2+ content, and force in intact rat heart trabeculae. Am J Physiol 274:H106–H114, 1998.

109. Morgan JP: Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 325:625–632, 1991.

110. Pagel PS, Warltier DC: Mechanical function of the left ventricle. In Yaksh TL, Lynch C III, Zapol WM, et al (eds): Anesthesia: Biologic Foundations. Philadelphia, Lippincott-Raven, 1998, pp 1081–1133.

111. Dougherty AH, Naccarelli GV, Gray EL, et al: Congestive heart failure with normal systolic function. Am J Cardiol 54:778–782, 1984.

112. Katz AM, Smith VE: Regulation of myocardial function in the normal and diseased heart. Modification by inotropic drugs. Eur Heart J 3(Suppl D):11–18, 1982.

113. Soufer R, Wohlgelernter D, Vita NA, et al: Intact systolic left ventricular function in clinical congestive heart failure. Am J Cardiol 55:1032–1036, 1985.

114. Pagel PS, Grossman W, Haering JM, Warltier DC: Left ventricular diastolic function in the normal and diseased heart: Perspectives for the anesthesiologist. Anesthesiology 79(Pt 1):836–854, 1993.

115. Pagel PS, Grossman W, Haering JM, Warltier DC: Left ventricular diastolic function in the normal and diseased heart: Perspectives for the anesthesiologist. Anesthesiology 79(Pt 2):1104–1120, 1993.

116. Doyle RL, Foex P, Ryder WA, Jones LA: Effects of halothane on left ventricular relaxation and early diastolic coronary blood flow in the dog. Anesthesiology 70:660–666, 1989.

117. Humphrey LS, Stinson DC, Humphrey MJ, et al: Volatile anesthetic effects on left ventricular relaxation in swine. Anesthesiology 73:731–738, 1990.

118. Pagel PS, Kampine JP, Schmeling WT, Warltier DC: Alteration of left ventricular diastolic function by desflurane, isoflurane, and halothane in the chronically instrumented dog with autonomic nervous system blockade. Anesthesiology 74:1103–1114, 1991.

119. Ihara T, Shannon RP, Komamura K, et al: Effects of anaesthesia and recent surgery on diastolic function. Cardiovasc Res 28:325–336, 1994.

120. Housmans PR, Murat I: Comparative effects of halothane, enflurane, and isoflurane at equipotent anesthetic concentrations on isolated ventricular myocardium of the ferret. II. Relaxation. Anesthesiology 69:464–471, 1988.

121. Goldberg AH, Phear WPC: Halothane and paired stimulation: Effects on myocardial compliance and contractility. J Appl Physiol 28:391–396, 1970.

122. Rusy BF, Moran JE, Vongvises P, et al: The effects of halothane and cyclopropane on left ventricular volume determined by high-speed biplane cineradiography in dogs. Anesthesiology 36:369–373, 1972.

123. Moores WY, Weiskopf RB, Baysinger M, Utley JR: Effects of halothane and morphine sulfate on myocardial compliance following total cardiopulmonary bypass. J Thorac Cardiovasc Surg 81:163–170, 1981.

124. Greene ES, Gerson JI: One versus two MAC halothane anesthesia does not alter the left ventricular diastolic pressure-volume relationship. Anesthesiology 64:230–237, 1986.

125. Ishizaka S, Asanoi H, Wada O, et al: Loading sequence plays an important role in enhanced load sensitivity of left ventricular relaxation in conscious dogs with tachycardia-induced cardiomyopathy. Circulation 92:3560–3567, 1995.

126. Eichhorn EJ, Willard JE, Alvarez L, et al: Are contraction and relaxation coupled in patients with and without congestive heart failure? Circulation 85:2132–2139, 1992.

127. Little WC: Enhanced load dependence of relaxation in heart failure: Clinical implications. Circulation 85:2326–2328, 1992.

128. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K: Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245:H773–H80, 1983.

129. Sunagawa K, Maughan WL, Sagawa K: Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56:586–595, 1985.

130. Burkhoff D, Sagawa K: Ventricular efficiency predicted by an analytical model. Am J Physiol 250:R1021–R1027, 1986.

131. Little WC, Cheng C-P: Left ventricular-arterial coupling in conscious dogs. Am J Physiol 261:H70–H76, 1991.

132. Starling MR: Left ventricular-arterial coupling relations in the normal human heart. Am Heart J 125:1659–1666, 1993.

133. Suga H: Ventricular energetics. Physiol Rev 70:247–277, 1990.

134. Kawasaki T, Hoka S, Okamoto H, et al: The difference of isoflurane and halothane in ventriculoarterial coupling in dogs. Anesth Analg 79:681–686, 1994.

135. Hettrick DA, Pagel PS, Warltier DC: Isoflurane and halothane produce similar alterations in aortic distensibility and characteristic aortic impedance. Anesth Analg 83:1166–1172, 1996.

136. Milnor WR: Hemodynamics, 2nd ed. Baltimore, Williams & Wilkins, 1989.

137. Lang RM, Borow KM, Neumann A, Janzen D: Systemic vascular resistance: An unreliable index of left ventricular afterload. Circulation 74:1114–1123, 1986.

138. Milnor WR: Arterial impedance as ventricular afterload. Circ Res 36:565–570, 1975.

139. Burkhoff D, Alexander J Jr, Schipke J: Assessment of Windkessel as a model of aortic input impedance. Am J Physiol 255:H742–H53, 1988.

140. Wesseling KH, Jansen JRC, Settels JJ, Schreuder JJ: Computation of aortic flow from pressure in humans using a nonlinear, three element model. J Appl Physiol 74:2566–2573, 1993.
220


141. Gersh BJ, Prys-Roberts C, Reuben SR, Schultz DL: The effects of halothane on the interactions between myocardial contractility, aortic input impedance, and left ventricular performance: II. Aortic input impedance, and the distribution of energy during ventricular ejection. Br J Anaesth 44:767–765, 1972.

142. Prys-Roberts C, Gersh BJ, Baker AB, Reuben SR: The effects of halothane on the interactions between myocardial contractility, aortic impedance, and left ventricular performance. 1. Theoretical considerations and results. Br J Anaesth 44:634–649, 1972.

143. Hettrick DA, Pagel PS, Warltier DC: Differential effects of isoflurane and halothane on aortic input impedance quantified using a three element Windkessel model. Anesthesiology 83:361–373, 1995.

144. Lowe D, Hettrick DA, Pagel PS, Warltier DC: Influence of volatile anesthetics on left ventricular afterload in vivo: Differences between desflurane and sevoflurane. Anesthesiology 85:112–120, 1996.

145. Pepine CJ, Nichols WW, Curry RC Jr, Conti CR: Aortic input impedance during nitroprusside infusion: A reconsideration of afterload reduction and beneficial action. J Clin Invest 64:643–654, 1979.

146. Lowe D, Hettrick DA, Pagel PS, Warltier DC: Propofol alters left ventricular afterload as evaluated by aortic input impedance in dogs. Anesthesiology 84:368–376, 1996.

147. Hettrick DA, Pagel PS, Kersten JR, et al: The effects of isoflurane and halothane on left ventricular afterload in dogs with dilated cardiomyopathy. Anesth Analg 85:979–986, 1997.

148. March HW, Ross JK, Lower RR: Observations on the behavior of the right ventricular outflow tract, with reference to its developmental origins. Am J Med 32:835–845, 1962.

149. Armour JA, Pace JB, Randall WC: Interrelationship of architecture and function of the right ventricle. Am J Physiol 218:174–179, 1970.

150. Pace JB, Keefe WF, Armour JA, Randall WC: Influence of sympathetic nerve stimulation on the right ventricular outflow tract pressure in anesthetized dogs. Circ Res 24:397–407, 1969.

Previous Next