|
|
REFERENCES
1.
Pagel PS, Warltier DC: Anesthetics and left ventricular
function. In Warltier DC (ed): Ventricular function.
Baltimore, Williams & Wilkins, 1995, pp 213–252.
2.
Goldberg AH, Ullrick WC: Effects of halothane on
isometric contractions of isolated heart muscle. Anesthesiology 28:838–845,
1967.
3.
Sugai N, Shimosato S, Etsten BE: Effect of halothane
on force-velocity relations and dynamic stiffness of isolated heart muscle. Anesthesiology
29:267–274, 1968.
4.
Shimosato S, Li TH, Etsten B: Ventricular function
during halothane anesthesia in closed chest dog. Circ Res 12:63–75, 1963.
5.
Deutsch S, Linde HW, Dripps RD, Price HL: Circulatory
and respiratory actions of halothane in normal man. Anesthesiology 23:631–638,
1962.
6.
Eger EI II, Smith NT, Stoelting RK, et al: Cardiovascular
effects of halothane in man. Anesthesiology 32:396–409, 1970.
7.
Severinghaus JW, Cullen SC: Depression of myocardium
and body oxygen consumption with Fluothane. Anesthesiology 19:165–177, 1958.
8.
Sonntag H, Donath U, Hillebrand W, et al: Left
ventricular function in conscious man and during halothane anesthesia. Anesthesiology
48:320–324, 1978.
9.
Shimosato S, Sugai N, Iwatsuki N, Etsten BE: The
effect of Ethrane on cardiac muscle mechanics. Anesthesiology 30:513–518,
1969.
10.
Kemmotsu O, Hashimoto Y, Shimosato S: Inotropic
effects of isoflurane on mechanics of contraction in isolated cat papillary muscles
from normal and failing hearts. Anesthesiology 39:470–477, 1973.
11.
Calverley RK, Smith NT, Prys-Roberts C, et al:
Cardiovascular effects of enflurane anesthesia during controlled ventilation in
man. Anesth Analg 57:619–628, 1978.
12.
Stevens WC, Cromwell TH, Halsey MJ, et al: The
cardiovascular effects of a new inhalation anesthetic, Forane, in human volunteers
at constant arterial carbon dioxide tension. Anesthesiology 35:8–16, 1971.
13.
Horan BF, Prys-Roberts C, Hamilton WK, Roberts
JG: Haemodynamic responses to enflurane anaesthesia and hypovolaemia in the dog,
and their modification by propranolol. Br J Anaesth 49:1189–1197, 1977.
14.
Merin RG, Kumazawa T, Luka NL: Myocardial function
and metabolism in the conscious dog and during halothane anesthesia. Anesthesiology
44:402–415, 1976.
15.
Merin RG, Kumazawa T, Luka NL: Enflurane depresses
myocardial function, perfusion, and metabolism in the dog. Anesthesiology 45:501–507,
1976.
16.
Pagel PS, Kampine JP, Schmeling WT, Warltier DC:
Comparison of the systemic and coronary hemodynamic actions of desflurane, isoflurane,
halothane, and enflurane in the chronically instrumented dog. Anesthesiology 74:539–551,
1991.
17.
Van Trigt P, Christian CC, Fagraeus L, et al:
The mechanism of halothane-induced myocardial depression: Altered diastolic mechanics
versus impaired contractility. J Thorac Cardiovasc Surg 85:832–838, 1983.
18.
Horan BF, Prys-Roberts C, Roberts JG, et al: Haemodynamic
responses to isoflurane anesthesia and hypovolaemia in the dog, and their modification
by propranolol. Br J Anaesth 49:1179–1187, 1977.
19.
Merin RG: Are the myocardial functional and metabolic
effects of isoflurane really different from those of halothane and enflurane? Anesthesiology
55:398–408, 1981.
20.
Pagel PS, Kampine JP, Schmeling WT, Warltier DC:
Comparison of end-systolic pressure-length relations and preload recruitable stroke
work as indices of myocardial contractility in the conscious and anesthetized, chronically
instrumented dog. Anesthesiology 73:278–290, 1990.
21.
Pagel PS, Nijhawan N, Warltier DC: Quantitation
of volatile anesthetic-induced depression of myocardial contractility using a single
beat index derived from maximal ventricular power. J Cardiothorac Vasc Anesth 7:688–695,
1993.
22.
Graves CL, McDermott RW, Bidwai A: Cardiovascular
effects of isoflurane in surgical patients. Anesthesiology 41:486–489, 1974.
23.
Tarnow J, Bruckner JB, Eberlein HJ, et al: Haemodynamics
and myocardial oxygen consumption during isoflurane (Forane) anaesthesia in geriatric
patients. Br J Anaesth 48:669–675, 1976.
24.
Hysing ES, Chelly JE, Jacobson L, et al: Cardiovascular
effects of acute changes in extracellular ionized calcium concentration induced by
citrate and CaCl2
infusions in chronically instrumented dogs, conscious
and during enflurane, halothane, and isoflurane anesthesia. Anesthesiology 72:100–104,
1990.
25.
Makela VHM, Kapur PA: Amrinone and verapamilpropranolol
induced cardiac depression during isoflurane anesthesia in dogs. Anesthesiology
66:792–797, 1987.
26.
Merin RG, Chelly JE, Hysing ES, et al: Cardiovascular
effects of and interaction between calcium blocking drugs and anesthetics in chronically
instrumented dogs. IV. Chronically administered oral verapamil and halothane, enflurane,
and isoflurane. Anesthesiology 66:140–146, 1987.
27.
Pagel PS, Hettrick DA, Warltier DC: Left ventricular
mechanical consequences of dihydropyridine calcium channel modulation in conscious
and anesthetized chronically instrumented dogs. Anesthesiology 81:190–208,
1994.
28.
Denlinger JK, Kaplan JA, Lecky JH, Wollman H:
Cardiovascular responses to calcium administered intravenously to man during halothane
anesthesia. Anesthesiology 42:390–397, 1975.
29.
Price HL: Calcium reverses myocardial depression
caused by halothane: Site of action. Anesthesiology 41:576–579, 1974.
30.
Pagel PS, Kampine JP, Schmeling WT, Warltier DC:
Reversal of volatile anesthetic-induced depression of myocardial contractility by
extracellular calcium also enhances left ventricular diastolic function. Anesthesiology
78:141–154, 1993.
31.
Makela VHM, Kapur PA: Amrinone blunts cardiac
depression caused by enflurane or isoflurane anesthesia in the dog. Anesth Analg
66:215–221, 1987.
32.
Pagel PS, Hettrick DA, Warltier DC: Amrinone enhances
myocardial contractility and improves left ventricular diastolic function in conscious
and anesthetized chronically instrumented dogs. Anesthesiology 79:753–765,
1993.
33.
Pagel PS, Harkin CP, Hettrick DA, Warltier DC:
Levosimendan (OR-1259), a myofilament calcium sensitizer, enhances myocardial contractility
but does not alter isovolumic relaxation in conscious and anesthetized dogs. Anesthesiology
81:974–987, 1994.
34.
Eger EI II: New inhaled anesthetics. Anesthesiology
80:906–922, 1994.
35.
Merin RG, Bernard JM, Doursout MF, et al: Comparison
of the effects of isoflurane and desflurane on cardiovascular dynamics and regional
blood flow in the chronically instrumented dog. Anesthesiology 74:568–574,
1991.
36.
Weiskopf RB, Holmes MA, Eger EI II, et al: Cardiovascular
effects of I653 in swine. Anesthesiology 69:303–309, 1988.
37.
Weiskopf RB, Cahalan MK, Eger EI II, et al: Cardiovascular
actions of desflurane in normocarbic volunteers. Anesth Analg 73:143–156,
1991.
38.
Cahalan MK, Weiskopf RB, Eger EI II, et al: Hemodynamic
effects of desflurane/nitrous oxide anesthesia in volunteers. Anesth Analg 73:157–164,
1991.
39.
Pagel PS, Kampine JP, Schmeling WT, Warltier DC:
Influence of volatile anesthetics on myocardial contractility in vivo: Desflurane
versus isoflurane. Anesthesiology 74:900–907, 1991.
40.
Pagel PS, Kampine JP, Schmeling WT, Warltier DC:
Evaluation of myocardial contractility in the chronically instrumented dog with
intact autonomic nervous system function: Effects of desflurane and isoflurane.
Acta Anaesthesiol Scand 37:203–210, 1993.
41.
Hettrick DA, Pagel PS, Warltier DC: Desflurane,
sevoflurane, and isoflurane impair canine left ventricular-arterial coupling and
mechanical efficiency. Anesthesiology 85:403–413, 1996.
42.
Ebert TJ, Muzi M: Sympathetic hyperactivity during
desflurane anesthesia in healthy volunteers: A comparison with isoflurane. Anesthesiology
79:444–453, 1993.
43.
Weiskopf RB, Eger EI II, Noorani M, Daniel M:
Fentanyl, esmolol, and clonidine blunt the transient cardiovascular stimulation induced
by desflurane in humans. Anesthesiology 81:1350–1355, 1994.
44.
Weiskopf RB, Moore MA, Eger EI II, et al: Rapid
increase in desflurane concentration is associated with greater transient cardiovascular
stimulation than rapid increase in isoflurane concentration in humans. Anesthesiology
80:1035–1045, 1994.
45.
Weiskopf RB, Eger EI II, Daniel M, Noorani M:
Cardiovascular stimulation induced by rapid increases in desflurane concentration
in humans results from activation of tracheopulmonary and systemic receptors. Anesthesiology
83:1173–1178, 1995.
46.
Bernard JM, Wouters PF, Doursout M-F, et al: Effects
of sevoflurane and isoflurane on cardiac and coronary dynamics in chronically instrumented
dogs. Anesthesiology 72:659–662, 1990.
47.
Harkin CP, Pagel PS, Kersten JR, et al: Direct
negative inotropic and lusitropic effects of sevoflurane. Anesthesiology 81:156–167,
1994.
48.
Lerman J, Oyston JP, Gallagher TM, et al: The
minumum alveolar concentration (MAC) and hemodynamic effects of halothane, isoflurane,
and sevoflurane in newborn swine. Anesthesiology 73:717–721, 1990.
49.
Kikura M, Ikeda K: Comparison of effects of sevoflurane-nitrous
oxide and enflurane-nitrous oxide on myocardial contractility in humans: Load-independent
and noninvasive assessment with transesophageal echocardiography. Anesthesiology
79:235–243, 1993.
50.
Kemmotsu O, Hashimoto Y, Shimosato S: The effects
of fluroxene and enflurane on contractile performance of isolated papillary muscles
from failing hearts. Anesthesiology 40:252–260, 1974.
51.
Lowenstein E, Foex P, Francis CM, et al: Regional
ischemic ventricular dysfunction in myocardium supplied by a narrowed coronary artery
with increasing halothane concentration in the dog. Anesthesiology 55:349–359,
1981.
52.
Kissin I, Thomson CT, Smith LR: Effects of halothane
on contractile function of ischemic myocardium. J Cardiovasc Pharmacol 5:438–442,
1983.
53.
Vivien B, Hanouz J-L, Gueugniaud P-Y, et al: Myocardial
effects of halothane and isoflurane in hamsters with hypertrophic cardiomyopathy.
Anesthesiology 87:1406–1416, 1997.
54.
Prys-Roberts C, Roberts JG, Foex P, et al: Interaction
of anesthesia, beta-receptor blockade, and blood loss in dogs with induced myocardial
infarction. Anesthesiology 45:326–329, 1976.
55.
Davis RF, DeBoer LW, Rude RE, et al: The effect
of halothane anesthesia on myocardial necrosis, hemodynamic performance, and regional
myocardial blood flow in dogs following coronary artery occlusion. Anesthesiology
59:402–411, 1983.
56.
Kersten JR, Schmeling TJ, Pagel PS, et al: Isoflurane
mimics ischemic preconditioning via activation of KATP
channels. Reduction
of myocardial infarct size with an acute memory phase. Anesthesiology 87:361–370,
1997.
57.
Van Ackern K, Vetter HO, Bruckner UB, et al: Effects
of enflurane on myocardial ischaemia in the dog. Br J Anaesth 57:497–504,
1985.
58.
Kanaya N, Fujita S: The effects of isoflurane
on regional myocardial contractility and metabolism in "stunned" myocardium in acutely
instrumented dogs. Anesth Analg 79:447–454, 1994.
59.
Lochner A, Harper IS, Salie R, et al: Halothane
protects the isolated rat myocardium against excessive total intracellular calcium
and structural damage during ischemia and reperfusion. Anesth Analg 79:226–233,
1994.
60.
Warltier DC, Al-Wathiqui MH, Kampine JP, Schmeling
WT: Recovery of contractile function of stunned myocardium in chronically instrumented
dogs is enhanced by halothane or isoflurane. Anesthesiology 69:552–565, 1988.
61.
Pagel PS, Hettrick DA, Lowe D, et al: Desflurane
and isoflurane exert modest beneficial actions on left ventricular diastolic function
during myocardial ischemia in dogs. Anesthesiology 83:1021–1035, 1995.
62.
Reiz S, Balfors E, Gustavsson B, et al: Effects
of halothane on coronary haemodynamics and myocardial metabolism in patients with
ischaemic heart disease and heart failure. Acta Anaesthesiol Scand 26:133–138,
1982.
63.
Reiz S, Balfors E, Sorensen MB, et al: Isoflurane:
A powerful coronary vasodilator in patients with coronary artery disease. Anesthesiology
59:91–97, 1983.
64.
Reiz S, Ostman M: Regional coronary hemodynamics
during isoflurane-nitrous oxide anesthesia in patients with ischemic heart disease.
Anesth Analg 64:570–576, 1985.
65.
Pagel PS, Lowe D, Hettrick DA, et al: Isoflurane,
but not halothane, improves indices of diastolic performance in dogs with rapid ventricular,
pacing-induced cardiomyopathy. Anesthesiology 85:644–654, 1996.
66.
Pagel PS, Hettrick DA, Kersten JR, et al: Isoflurane
and halothane do not alter the enhanced afterload sensitivity of left ventricular
relaxation in dogs with pacing-induced cardiomyopathy. Anesthesiology 87:952–962,
1997.
67.
Rusy BF, Komai H: Anesthetic depression of myocardial
contractility: A review of possible mechanisms. Anesthesiology 67:745–766,
1987.
68.
Lynch C III: Myocardial excitation-contraction
coupling. In Yaksh TL, Lynch C III, Zapol WM, et
al (eds): Anesthesia: Biologic Foundations. Philadelphia, Lippincott-Raven, 1997,
pp 1041–1079.
69.
Bosnjak ZJ, Aggarwal A, Turner LA, et al: Differential
effects of halothane, enflurane, and isoflurane on Ca2+
transients and
papillary muscle tension in guinea pigs. Anesthesiology 76:123–131, 1992.
70.
Bosnjak ZJ, Kampine JP: Effects of halothane on
transmembrane potentials, Ca2+
transients, and papillary muscle tension
in the cat. Am J Physiol 251:H374–H381, 1986.
71.
Eskinder H, Rusch NJ, Supan FD, et al: The effects
of volatile anesthetics on L- and T-type calcium channel currents in canine cardiac
Purkinje cells. Anesthesiology 74:919–926, 1991.
72.
Lynch C III: Effects of halothane and isoflurane
on isolated human ventricular myocardium. Anesthesiology 68:429–432, 1988.
73.
Hatakeyama N, Momose Y, Ito Y: Effects of sevoflurane
on contractile responses and electrophysiologic properties in canine single cardiac
myocytes. Anesthesiology 82:559–565, 1995.
74.
Bosnjak ZJ, Supan FD, Rusch NJ: The effects of
halothane, enflurane, and isoflurane on calcium current in isolated canine ventricular
cells. Anesthesiology 74:340–345, 1991.
75.
Lynch C III: Differential depression of myocardial
contractility by halothane and isoflurane in vitro. Anesthesiology 64:620–631,
1986.
76.
Blanck TJJ, Runge S, Stevenson RL: Halothane decreases
calcium channel antagonist binding to cardiac membranes. Anesth Analg 67:1032–1035,
1988.
77.
Drenger B, Quigg M, Blanck TJJ: Volatile anesthetics
depress calcium channel blocker binding to bovine cardiac sarcolemma. Anesthesiology
74:155–165, 1991.
78.
Hoehner PJ, Quigg MC, Blanck TJJ: Halothane depresses
D600 binding to bovine heart sarcolemma. Anesthesiology 75:1019–1024, 1991.
79.
Katsuoka M, Kobayashi K, Ohnishi ST: Volatile
anesthetics decrease calcium content of isolated myocytes. Anesthesiology 70:954–960,
1989.
80.
Katsuoka M, Ohnishi ST: Inhalation anesthetics
decrease calcium content of cardiac sarcoplasmic reticulum. Br J Anaesth 62:669–673,
1989.
81.
Komai H, Rusy BF: Direct effect of halothane and
isoflurane on the function of the sarcoplasmic reticulum in intact rabbit atria.
Anesthesiology 72:694–698, 1990.
82.
Wheeler DM, Katz A, Rice RT, Hansford RG: Volatile
anesthetic effects on sarcoplasmic reticulum Ca content and sarcolemmal Ca flux in
isolated rat cardiac cell suspensions. Anesthesiology 80:372–382, 1994.
83.
Wilde DW, Davidson BA, Smith MD, Knight PR: Effects
of isoflurane and enflurane on intracellular Ca2+
mobilization in isolated
cardiac myocytes. Anesthesiology 79:73–82, 1993.
84.
Luk HN, Lin CI, Chang CL, Lee AR: Differential
inotropic effects of halothane and isoflurane in dog ventricular tissues. Eur J
Pharmacol 136:409–413, 1987.
85.
Lynch C III, Vogel S, Sperelakis N: Halothane
depression of myocardial slow action potentials. Anesthesiology 55:360–368,
1981.
86.
Wheeler DM, Rice RT, Lakatta EG: The action of
halothane on spontaneous contractile waves and stimulated contractions in isolated
rat and dog heart cells. Anesthesiology 72:911–920, 1990.
87.
Lynch C III, Frazer MJ: Anesthetic alteration
of ryanodine binding by cardiac calcium release channels. Biochim Biophys Acta 1194:109–117,
1994.
88.
Connelly TJ, Coronado R: Activation of the Ca2+
release channel of cardiac sarcoplasmic reticulum by volatile anesthetics. Anesthesiology
81:459–469, 1994.
89.
Casella ES, Suite ND, Fisher YI, Blanck TJ: The
effect ofvolatile anesthetics on the pH dependence of calcium uptake by cardiac sarcoplasmic
reticulum. Anesthesiology 67:386–390, 1987.
90.
Frazer MJ, Lynch C III: Halothane and isoflurane
effects on Ca2+
fluxes of isolated myocardial sarcoplasmic reticulum.
Anesthesiology 77:316–323, 1992.
91.
Hannon JD, Cody MJ: Effects of volatile anesthetics
in sarcolemmal calcium transport and sarcoplasmic reticulum calcium content in isolated
myocytes. Anesthesiology 96:1457–1464, 2002.
92.
Miao N, Lynch C III: Effect of temperature on
volatile anesthetic depression of myocardial contractions. Anesth Analg 76:366–731,
1993.
93.
Baum VC, Wetzel GT: Sodium-calcium exchange in
neonatal myocardium: Reversible inhibition by halothane. Anesth Analg 78:1105–1109,
1994.
94.
Haworth RA, Goknur AB, Berkoff HA: Inhibition
of Na-Ca exchange by general anesthetics. Circ Res 65:1021–1028, 1989.
95.
Haworth RA, Goknur AB: Inhibition of sodium/calcium
exchange and calcium channels of heart cells by volatile anesthetics. Anesthesiology
82:1255–1265, 1995.
96.
Baum VC, Klitzner TS: Excitation-contraction coupling
in neonatal myocardium: Effects of halothane and isoflurane. Dev Pharmacol Ther
16:99–107, 1991.
97.
Su JY, Kerrick WG: Effects of halothane on Ca2+
activated tension development in mechanically disrupted rabbit myocardial fibers.
Pflugers Arch 375:111–117, 1978.
98.
Murat I, Ventura-Clapier R, Vassort G: Halothane,
enflurane, and isoflurane decrease calcium sensitivity and maximal force in detergent-treated
rat cardiac fibers. Anesthesiology 69:892–899, 1988.
99.
Tavernier BM, Adnet PJ, Imbenotte M, et al: Halothane
and isoflurane decrease calcium sensitivity and maximal force in human skinned cardiac
fibers. Anesthesiology 80:625–633, 1994.
100.
Merin RG, Kumazawa T, Honig CR: Reversible interaction
between halothane and Ca2+
on cardiac actomyosin adenosine triphosphatase:
Mechanism and significance. J Pharmacol Exp Ther 190:1–14, 1974.
101.
Pask HT, England PJ, Prys-Roberts C: Effects
of volatile inhalational anesthetic agents on isolated bovine cardiac myofibrillar
ATPase. J Mol Cell Cardiol 13:293–301, 1981.
102.
Murat I, Lechene P, Ventura-Clapier R: Effects
of volatile anesthetics on mechanical properties of rat cardiac skinned fibers.
Anesthesiology 73:73–81, 1990.
103.
Hannon JD, Cody MJ, Housmans PR: Effects of isoflurane
on intracellular calcium and myocardial crossbridge kinetics in tetanized papillary
muscles. Anesthesiology 94:856–861, 2001.
104.
Blanck TJJ, Chiancone E, Salviati G, et al: Halothane
does not alter Ca2+
affinity of troponin C. Anesthesiology 76:100–105,
1992.
105.
Housmans PR: Negative inotropy of halogenated
anesthetics in ferret ventricular myocardium. Am J Physiol 259:H827–H834,
1990.
106.
Baele P, Housmans PR: The effects of halothane,
enflurane, and isoflurane on the length-tension relation of the isolated papillary
muscle of the ferret. Anesthesiology 74:281–291, 1991.
107.
Davies LA, Gibson CN, Boyett MR, et al: Effects
of isoflurane, sevoflurane, and halothane on myofilament Ca2+
sensitivity
and sarcoplasmic reticulum Ca2+
release in rat ventricular myocytes.
Anesthesiology 93:1034–1044, 2000.
108.
Jiang Y, Julian FJ: Effects of halothane on [Ca2+
]i
transient, SR Ca2+
content, and force in intact rat heart trabeculae.
Am J Physiol 274:H106–H114, 1998.
109.
Morgan JP: Abnormal intracellular modulation
of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 325:625–632,
1991.
110.
Pagel PS, Warltier DC: Mechanical function of
the left ventricle. In Yaksh TL, Lynch C III, Zapol
WM, et al (eds): Anesthesia: Biologic Foundations. Philadelphia, Lippincott-Raven,
1998, pp 1081–1133.
111.
Dougherty AH, Naccarelli GV, Gray EL, et al:
Congestive heart failure with normal systolic function. Am J Cardiol 54:778–782,
1984.
112.
Katz AM, Smith VE: Regulation of myocardial function
in the normal and diseased heart. Modification by inotropic drugs. Eur Heart J
3(Suppl D):11–18, 1982.
113.
Soufer R, Wohlgelernter D, Vita NA, et al: Intact
systolic left ventricular function in clinical congestive heart failure. Am J Cardiol
55:1032–1036, 1985.
114.
Pagel PS, Grossman W, Haering JM, Warltier DC:
Left ventricular diastolic function in the normal and diseased heart: Perspectives
for the anesthesiologist. Anesthesiology 79(Pt 1):836–854, 1993.
115.
Pagel PS, Grossman W, Haering JM, Warltier DC:
Left ventricular diastolic function in the normal and diseased heart: Perspectives
for the anesthesiologist. Anesthesiology 79(Pt 2):1104–1120, 1993.
116.
Doyle RL, Foex P, Ryder WA, Jones LA: Effects
of halothane on left ventricular relaxation and early diastolic coronary blood flow
in the dog. Anesthesiology 70:660–666, 1989.
117.
Humphrey LS, Stinson DC, Humphrey MJ, et al:
Volatile anesthetic effects on left ventricular relaxation in swine. Anesthesiology
73:731–738, 1990.
118.
Pagel PS, Kampine JP, Schmeling WT, Warltier DC:
Alteration of left ventricular diastolic function by desflurane, isoflurane, and
halothane in the chronically instrumented dog with autonomic nervous system blockade.
Anesthesiology 74:1103–1114, 1991.
119.
Ihara T, Shannon RP, Komamura K, et al: Effects
of anaesthesia and recent surgery on diastolic function. Cardiovasc Res 28:325–336,
1994.
120.
Housmans PR, Murat I: Comparative effects of
halothane, enflurane, and isoflurane at equipotent anesthetic concentrations on isolated
ventricular myocardium of the ferret. II. Relaxation. Anesthesiology 69:464–471,
1988.
121.
Goldberg AH, Phear WPC: Halothane and paired
stimulation: Effects on myocardial compliance and contractility. J Appl Physiol
28:391–396, 1970.
122.
Rusy BF, Moran JE, Vongvises P, et al: The effects
of halothane and cyclopropane on left ventricular volume determined by high-speed
biplane cineradiography in dogs. Anesthesiology 36:369–373, 1972.
123.
Moores WY, Weiskopf RB, Baysinger M, Utley JR:
Effects of halothane and morphine sulfate on myocardial compliance following total
cardiopulmonary bypass. J Thorac Cardiovasc Surg 81:163–170, 1981.
124.
Greene ES, Gerson JI: One versus two MAC halothane
anesthesia does not alter the left ventricular diastolic pressure-volume relationship.
Anesthesiology 64:230–237, 1986.
125.
Ishizaka S, Asanoi H, Wada O, et al: Loading
sequence plays an important role in enhanced load sensitivity of left ventricular
relaxation in conscious dogs with tachycardia-induced cardiomyopathy. Circulation
92:3560–3567, 1995.
126.
Eichhorn EJ, Willard JE, Alvarez L, et al: Are
contraction and relaxation coupled in patients with and without congestive heart
failure? Circulation 85:2132–2139, 1992.
127.
Little WC: Enhanced load dependence of relaxation
in heart failure: Clinical implications. Circulation 85:2326–2328, 1992.
128.
Sunagawa K, Maughan WL, Burkhoff D, Sagawa K:
Left ventricular interaction with arterial load studied in isolated canine ventricle.
Am J Physiol 245:H773–H80, 1983.
129.
Sunagawa K, Maughan WL, Sagawa K: Optimal arterial
resistance for the maximal stroke work studied in isolated canine left ventricle.
Circ Res 56:586–595, 1985.
130.
Burkhoff D, Sagawa K: Ventricular efficiency
predicted by an analytical model. Am J Physiol 250:R1021–R1027, 1986.
131.
Little WC, Cheng C-P: Left ventricular-arterial
coupling in conscious dogs. Am J Physiol 261:H70–H76, 1991.
132.
Starling MR: Left ventricular-arterial coupling
relations in the normal human heart. Am Heart J 125:1659–1666, 1993.
133.
Suga H: Ventricular energetics. Physiol Rev
70:247–277, 1990.
134.
Kawasaki T, Hoka S, Okamoto H, et al: The difference
of isoflurane and halothane in ventriculoarterial coupling in dogs. Anesth Analg
79:681–686, 1994.
135.
Hettrick DA, Pagel PS, Warltier DC: Isoflurane
and halothane produce similar alterations in aortic distensibility and characteristic
aortic impedance. Anesth Analg 83:1166–1172, 1996.
136.
Milnor WR: Hemodynamics, 2nd ed. Baltimore,
Williams & Wilkins, 1989.
137.
Lang RM, Borow KM, Neumann A, Janzen D: Systemic
vascular resistance: An unreliable index of left ventricular afterload. Circulation
74:1114–1123, 1986.
138.
Milnor WR: Arterial impedance as ventricular
afterload. Circ Res 36:565–570, 1975.
139.
Burkhoff D, Alexander J Jr, Schipke J: Assessment
of Windkessel as a model of aortic input impedance. Am J Physiol 255:H742–H53,
1988.
140.
Wesseling KH, Jansen JRC, Settels JJ, Schreuder
JJ: Computation of aortic flow from pressure in humans using a nonlinear, three
element model. J Appl Physiol 74:2566–2573, 1993.
141.
Gersh BJ, Prys-Roberts C, Reuben SR, Schultz DL:
The effects of halothane on the interactions between myocardial contractility, aortic
input impedance, and left ventricular performance: II. Aortic input impedance, and
the distribution of energy during ventricular ejection. Br J Anaesth 44:767–765,
1972.
142.
Prys-Roberts C, Gersh BJ, Baker AB, Reuben SR:
The effects of halothane on the interactions between myocardial contractility, aortic
impedance, and left ventricular performance. 1. Theoretical considerations and results.
Br J Anaesth 44:634–649, 1972.
143.
Hettrick DA, Pagel PS, Warltier DC: Differential
effects of isoflurane and halothane on aortic input impedance quantified using a
three element Windkessel model. Anesthesiology 83:361–373, 1995.
144.
Lowe D, Hettrick DA, Pagel PS, Warltier DC: Influence
of volatile anesthetics on left ventricular afterload in vivo: Differences between
desflurane and sevoflurane. Anesthesiology 85:112–120, 1996.
145.
Pepine CJ, Nichols WW, Curry RC Jr, Conti CR:
Aortic input impedance during nitroprusside infusion: A reconsideration of afterload
reduction and beneficial action. J Clin Invest 64:643–654, 1979.
146.
Lowe D, Hettrick DA, Pagel PS, Warltier DC: Propofol
alters left ventricular afterload as evaluated by aortic input impedance in dogs.
Anesthesiology 84:368–376, 1996.
147.
Hettrick DA, Pagel PS, Kersten JR, et al: The
effects of isoflurane and halothane on left ventricular afterload in dogs with dilated
cardiomyopathy. Anesth Analg 85:979–986, 1997.
148.
March HW, Ross JK, Lower RR: Observations on
the behavior of the right ventricular outflow tract, with reference to its developmental
origins. Am J Med 32:835–845, 1962.
149.
Armour JA, Pace JB, Randall WC: Interrelationship
of architecture and function of the right ventricle. Am J Physiol 218:174–179,
1970.
150.
Pace JB, Keefe WF, Armour JA, Randall WC: Influence
of sympathetic nerve stimulation on the right ventricular outflow tract pressure
in anesthetized dogs. Circ Res 24:397–407, 1969.