Previous Next

REFERENCES

151. Schubert A, Peterson DO, Drummond JC, et al: The effect of high-dose fentanyl on human median nerve somatosensory evoked responses. Anesth Analg 65:S136, 1986.

152. Grundy BL, Brown RH: Meperidine enhances somatosensory cortical evoked potentials. Electroencephalogr Clin Neurophysiol 50:177, 1980.

153. Samra SK, Lilly DJ, Rush NL, et al: Fentanyl anesthesia and human brain-stem auditory evoked potentials. Anesthesiology 61:261, 1984.

154. Eng DY, Dong WK, Bledsoe SW, et al: Electrical and pathological correlates of brain hypoxia during hypotension. Anesthesiology 53:S92, 1980.

155. Kobrine AI, Evans DE, Rizzoli HV: Relative vulnerability of the brain and spinal cord to ischemia. J Neurol Sci 45:65, 1980.

156. Bunegin L, Albin MS, Helsel P, et al: Evoked responses during trimethaphan hypotension. Anesthesiology 55:A232, 1981.

157. Grundy BL, Nash CL, Brown RH: Arterial pressure manipulation alters spinal cord function during correction of scoliosis. Anesthesiology 54:249, 1981.

158. Russ W, Kling D, Loesevitz A, et al: Effect of hypothermia on visual evoked potential (VEP) in humans. Anesthesiology 61:207, 1984.

159. Stockard JJ, Sharbrough FW, Tinker JA: Effects of hypothermia on the human brainstem auditory response. Ann Neurol 3:368, 1978.

160. Spetzler RF, Hadley MN, Rigamonti D, et al: Aneurysms of the basilar artery treated with circulatory arrest, hypothermia, and barbiturate cerebral protection. J Neurosurg 68:868, 1988.

161. Dubois M, Loppola R, Buchsbaum MS, et al: Somatosensory evoked potentials during whole body hyperthermia in humans. Electroencephalogr Clin Neurophysiol 52:157, 1981.

162. Nakagawa Y, Ohtsuka T, Tsura M, et al: Effects of mild hypercapnia on somatosensory evoked potentials in experimental cerebral ischemia. Stroke 25:275, 1984.

163. Grundy BL, Heros RC, Tung AS, et al: Intraoperative hypoxia detected by evoked potential monitoring. Anesth Analg 60:437, 1981.

164. Nagao S, Roccaforte P, Moody RA: The effects of isovolemic hemodilution and reinfusion of packed erythrocytes on somatosensory and visual evoked potentials. J Surg Res 25:S30, 1978.

165. Harper CM, Daube RJ: Surgical monitoring with evoked potentials: The Mayo Clinic experience. In Desmedt JE (ed): Neuromonitoring in Surgery. New York, Elsevier Science, 1989, p 275.

166. Harner SG, Daube JR, Beatty CW: Improved preservation of facial nerve function with use of electrical monitoring during removal of acoustic neuromas. Mayo Clin Proc 62:92, 1987.

167. Harner SG, Daube JR, Ebersold MJ: Electrophysiologic monitoring of facial nerve during temporal bone surgery. Laryngoscope 96:65, 1986.

168. Acoustic neuroma. Consens Statement 9:1, 1991.

169. Miller AR, Jannetta PJ: Microvascular decompression in hemifacial spasm: Intraoperative electrophysiological observations. Neurosurgery 16:612, 1985.

170. Lennon RL, Hosking MP, Daube JR, et al: Effect of partial neuromuscular blockade on intraoperative electromyography in patients undergoing resection of acoustic neuroma. Anesth Analg 75:729, 1992.

171. Zentner J, Kiss I, Ebner A: Influence of anesthetics—nitrous oxide in particular—on electromyographic response evoked by transcranial electrical stimulation of the cortex. Neurosurgery 24:253, 1989.

172. Zentner J, Abner A: Nitrous oxide suppresses the electromyographic response evoked by electrical stimulation of the motor cortex. Neurosurgery 24:60, 1989.

173. Kline DG, Kim D, Midha R, et al: Management and results of sciatic nerve injuries: A 24-year experience. J Neurosurg 89:13, 1998.

174. Kim DH, Cho YJ, Tiel RL, et al: Outcomes of surgery in 1019 brachial plexus lesions treated at Louisiana State University Health Sciences Center. J Neurosurg 98:1005, 2003.

175. Levy WJ, York DH, McCaffrey M, et al: Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery 15:287, 1984.

176. Legatt AD: Current practice of motor evoked potential monitoring: Results of a survey. J Clin Neurophysiol 19:454, 2002.

177. MacDonald DB, Al Zayed Z, Khoudeir I, et al: Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine 28:194, 2003.

178. Szelenyi A, Bueno de Camargo A, Flamm E, et al: Neurophysiological criteria for intraoperative prediction of pure motor hemiplegia during aneurysm surgery: Case report. J Neurosurg 99:575, 2003.

179. Meylaerts S, Jacobs MJ, van Iterson V, et al: Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 230:742, 1999.

180. Pelosi L, Lamb J, Grevitt M, et al: Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 113:1082, 2002.

181. Zentner J: Motor evoked potential monitoring during neurosurgical operations on the spinal cord. Neurosurg Rev 14:29, 1991.

182. Owen JH, Laschinger J, Bridwell K, et al: Sensitivity and specificity of somatosensory and neurogenic-motor evoked potentials in animals and humans. Spine 13:1111, 1988.

183. Edmonds HL, Paloheimo MPJ, Backman MH, et al: Transcranial magnetic motor evoked potentials for functional monitoring of motor pathways during scoliosis surgery. Spine 14:683, 1989.

184. Boyd SG, Rothwell JC, Cowan JMA, et al: A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 49:251, 1986.

185. Elmore JR, Gloviczki P, Harper CM, et al: Failure of motor evoked potentials to predict neurologic outcome in experimental thoracic aortic occlusion. J Vasc Surg 14:131, 1991.

186. Reuter DG, Tacker WA, Badylak SF, et al: Correlation of motor-evoked potential response to ischemic spinal cord damage. J Thorac Cardiovasc Surg 104:262, 1992.

187. Dong CC, MacDonald DB, Janusz MT: Intraoperative spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery. Ann Thorac Surg 74:S1873, 2002.

188. Guerit JM, Dion RA: State-of-the-art of neuromonitoring for prevention of immediate and delayed paraplegia in thoracic and thoracoabdominal aorta surgery. Ann Thorac Surg 74:S1867, 2002.

189. Jacobs MJ, Elenbaas TW, Schurink GW, et al: Assessment of spinal cord integrity during thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 74:S1864, 2002.

190. MacDonald DB, Janusz M: An approach to intraoperative neurophysiologic monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol 19:43, 2002.

191. Meylaerts SA, Jacobs MJ, van Iterson V, et al: Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 230:742, 1999.

192. de Haan P, Kalkman CJ, Jacobs MJ: Spinal cord monitoring with myogenic motor evoked potentials: Early detection of spinal cord ischemia as an integral part of spinal cord protective strategies during thoracoabdominal aneurysm surgery. Semin Thorac Cardiovasc Surg 10:19, 1998.

193. Owen JH, Bridwell KH, Grubb R, et al: The clinical application of neurogenic motor evoked potentials to monitor spinal cord function during surgery. Spine 16(Suppl):S385, 1991.


1549


194. Darden BV 2nd, Hatley MK, Owen JH: Neurogenic motor evoked-potential monitoring in anterior cervical surgery. J Spinal Disord 9:485, 1996.

195. Pereon Y, Bernard JM, Fayet G, et al: Usefulness of neurogenic motor evoked potentials for spinal cord monitoring: Findings in 112 consecutive patients undergoing surgery for spinal deformity. Electroencephalogr Clin Neurophysiol 108:17, 1998.

196. Toleikis JR, Skelly JP, Carlvin AO, et al: Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol 111:736, 2000.

197. Jellinek D, Jewkes D, Symon L: Noninvasive intraoperative monitoring of motor evoked potentials under propofol anesthesia: Effects of spinal surgery on the amplitude and latency of motor evoked potentials. Neurosurgery 29:551, 1991.

198. Taniguchi M, Nadstawek J, Langenbach U, et al: Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery 33:407, 1993.

199. Ubags LH, Kalkman CJ, Been HD, et al: The use of ketamine or etomidate to supplement sufentanil/N2 O anesthesia does not disrupt monitoring of myogenic transcranial motor evoked responses. J Neurosurg Anesthesiol 9:228, 1997.

200. Kalkman CJ, Drummond JC, Patel PM, et al: Effects of droperidol, pentobarbital and ketamine on myogenic motor evoked responses in humans. Neurosurgery 35:1066, 1994.

201. DeWitt LD, Wechsler LR: Transcranial Doppler. Stroke 19:915, 1988.

202. Sloan TB, Heyer EJ: Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19:430, 2002.

203. Zentner J, Thees C, Pechstein U, et al: Influence of nitrous oxide on motor-evoked potentials. Spine 22:1002, 1997.

204. Nathan N, Tabaraud F, Lacroix F, et al: Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth 91:493, 2003.

205. Ghaly RF, Ham JH, Lee JJ: High-dose ketamine hydrochloride maintains somatosensory and magnetic motor evoked potentials in primates. Neurol Res 23:881, 2001.

206. Scheufler KM, Zentner J: Total intravenous anesthesia for intraoperative monitoring of the motor pathways: An integral view combining clinical and experimental data. J Neurosurg 96:571, 2002.

207. Taniguchi M, Nadstawek J, Langenbach U, et al: Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery 33:407, 1993.

208. Ubags LH, Kalkman CJ, Been HD, et al: The use of ketamine or etomidate to supplement sufentanil/N2 O anesthesia does not disrupt monitoring of myogenic transcranial motor evoked responses. J Neurosurg Anesthesiol 9:228, 1997.

209. Yang LH, Lin SM, Lee WY, et al: Intraoperative transcranial electrical motor evoked potential monitoring during spinal surgery under intravenous ketamine or etomidate anesthesia. Acta Neurochir (Wien) 127:191, 1994.

210. Ubags LH, Kalkman CJ, Been HD, et al: A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia. Anesth Analg 88:568, 1999.

211. Pechstein U, Nadstawek J, Zentner J, et al: Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol 108:175, 1998.

212. Pelosi L, Stevenson M, Hobbs GJ, et al: Intraoperative motor evoked potentials to transcranial electrical stimulation during two anaesthetic regimens. Clin Neurophysiol 112:1076, 2001.

213. Ubaga LH, Kalkman CJ, Been HD: Influence of isoflurane on myogenic motor evoked potentials to single and multiple transcranial stimuli during nitrous oxide/opioid anesthesia. Neurosurgery 43:90, 1998.

214. Halsey JH, McDowell HA, Gelman S: Transcranial Doppler and rCBF compared in carotid endarterectomy. Stroke 17:1206, 1986.

215. Molloy J, Markus HS: Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke 30:1440, 1999.

216. Ackerstaff RG, Moons KG, van de Vlasakker CJ, et al: Association of intraoperative transcranial Doppler monitoring variables with stroke from carotid endarterectomy. Stroke 31:1817, 2000.

217. Laman DM, Wieneke GH, van Duijn H, et al: High embolic rate early after carotid endarterectomy is associated with early cerebrovascular complications, especially in women. J Vasc Surg 36:278, 2002.

218. Munts AG, Mess WH, Bruggemans EF, et al: Feasibility and reliability of on-line automated microemboli detection after carotid endarterectomy: A transcranial Doppler study. Eur J Vasc Endovasc Surg 25:262, 2003.

219. Levi CR, O'Malley HM, Fell G, et al: Transcranial Doppler detected cerebral microembolism following carotid endarterectomy. High microembolic signal loads predict postoperative cerebral ischaemia. Brain 120(Pt 4):621, 1997.

220. Levi CR, Roberts AK, Fell G, et al: Transcranial Doppler microembolus detection in the identification of patients at high risk of perioperative stroke. Eur J Vasc Endovasc Surg 14:170, 1997.

221. Smith JL, Evans DH, Gaunt ME, et al: Experience with transcranial Doppler monitoring reduces the incidence of particulate embolization during carotid endarterectomy. Br J Surg 85:56, 1998.

222. van der Linden J, Casimir AH: When do cerebral emboli occur during open heart operations? A transcranial Doppler study. Ann Thorac Surg 51:237, 1991.

223. Pugsley W, Klinger L, Paschalis C, et al: The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke 25:1393, 1994.

224. Clark RE, Brillman J, Davis DA, et al: Microemboli during coronary artery bypass grafting. J Thorac Cardiovasc Surg 109:249, 1995.

225. Fearn SJ, Pole R, Burgess M, Ray SG, et al: Cerebral embolisation during modern cardiopulmonary bypass. Eur J Cardiothorac Surg 20:1163, 2001.

226. Borger MA, Djaiani G, Fedorko L, et al: Reduction of cerebral emboli during cardiac surgery: Influence of surgeon and perfusionist feedback. Heart Surg Forum 6:204, 2003.

227. Groom RC, Likosky DS, O'Connor GT, et al: Identification of techniques associated with changes in embolic count, hemodynamics and cerebral desaturation. II. Perfusion. Heart Surg Forum 6:205, 2003.

228. Sloan MA, Haley EC, Kassell NF, et al: Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology 39:1514, 1989.

229. Sekhar LN, Wechsler LR, Yonas H, et al: Value of transcranial Doppler examination in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 22:813, 1988.

230. Suarez JI, Qureshi AI, Yahia AB, et al: Symptomatic vasospasm diagnosis after subarachnoid hemorrhage: Evaluation of transcranial Doppler ultrasound and cerebral angiography as related to compromised vascular distribution. Crit Care Med 30:1348, 2002.

231. Topcuoglu MA, Pryor JC, Ogilvy CS, et al: Cerebral vasospasm following subarachnoid hemorrhage. Curr Treat Options Cardiovasc Med 4:373, 2002.

232. Jarus-Dziedzic K, Juniewicz H, Wronski J, et al: The relation between cerebral blood flow velocities as measured by TCD and the incidence of delayed ischemic deficits: A prospective study after subarachnoid hemorrhage. Neurol Res 24:582, 2002.

233. Aaslid R: Transcranial Doppler assessment of cerebral vasospasm. Eur J Ultrasound 16:3, 2002.

234. Mascia L, Fedorko L, terBrugge K, et al: The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med 29:1088, 2003.
1550


235. Petty GW, Mohr JP, Pedley T, et al: The role of transcranial Doppler in confirming brain death. Neurology 40:300, 1990.

236. Fortune JB, Feustel PJ, Graca L, et al: Effect of hyperventilation, mannitol, and ventriculostomy drainage on cerebral blood flow after head injury. J Trauma 39:1091, 1995.

237. Skippen P, Seear M, Poskitt K, et al: Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med 25:1402, 1997.

238. Imberti R, Bellinzona G, Langer M: Cerebral tissue PO2 and SjvO2 changes during moderate hyperventilation in patients with severe traumatic brain injury. J Neurosurg 96:97, 2002.

239. Coles JP, Minhas PS, Fryer TD, et al: Effect of hyperventilation on cerebral blood flow in traumatic head injury: Clinical relevance and monitoring correlates. Crit Care Med 30:1950, 2002.

240. Williams IM, Picton A, Farrell A, et al: Light-reflective cerebral oximetry and jugular bulb venous oxygen saturation during carotid endarterectomy. Br J Surg 81:1291, 1994.

241. Gopinath SP, Cormio M, Ziegler J, et al: Intraoperative jugular desaturation during surgery for traumatic intracranial hematomas. Anesth Analg 83:1014, 1996.

242. Unterberg AW, Kiening KL, Härtl R, et al: Multimodal monitoring in patients with head injury: Evaluation of the effects of treatment on cerebral oxygenation. J Trauma 42:S32, 1997.

243. Matta BF, Lam AM: The rate of blood withdrawal affects the accuracy of jugular venous bulb oxygen saturation measurements. Anesthesiology 86:806, 1997.

244. Moss E, Dearden NM, Berridge JC: Effects of changes in mean arterial pressure on SjO2 during cerebral aneurysm surgery. Br J Anaesth 75:527, 1995.

245. Croughwell ND, White WD, Smith LR, et al: Jugular bulb saturation and mixed venous saturation during cardiopulmonary bypass. J Card Surg 10:503, 1995.

246. Smythe PR, Samra SK: Monitors of cerebral oxygenation. Anesthesiol Clin North Am 20:293, 2002.

247. Rampil IJ, Litt L, Mayevsky A: Correlated, simultaneous, multiple-wavelength optical monitoring in vivo of localized cerebrocortical NADH and brain microvessel hemoglobin oxygen saturation. J Clin Monit 8:216, 1992.

248. Dunham CM, Sosnowski C, Porter JM, et al: Correlation of noninvasive cerebral oximetry with cerebral perfusion in the severe head injured patient: A pilot study. J Trauma 52:40, 2002.

249. Buchner K, Meixensberger J, Dings J, et al: Near-infrared spectroscopy—Not useful to monitor cerebral oxygenation after severe brain injury. Zentralbl Neurochir 61:69, 2000.

250. Macmillan CS, Andrews PJ: Cerebrovenous oxygen saturation monitoring: Practical considerations and clinical relevance. Intensive Care Med 26:1028, 2000.

251. McLeod AD, Igielman F, Elwell C, et al: Measuring cerebral oxygenation during normobaric hyperoxia: A comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury. Anesth Analg 97:851, 2003.

252. Kirkpatric PJ, Smielewski P, Czosnyka M, et al: Near-infrared spectroscopy use in patients with head injury. J Neurosurg 83:963, 1995.

253. Samra SK, Dy EA, Welch K, et al: Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology 93:964, 2000.

254. Grubhofer G, Lassnigg A, Manlik F, et al: The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thromboendarterectomy. Anaesthesia 52:116, 1997.

255. Beese U, Langer H, Lang W, et al: Comparison of near-infrared spectroscopy and somatosensory evoked potentials for the detection of cerebral ischemia during carotid endarterectomy. Stroke 29:2032, 1998.

256. Reents W, Muellges W, Franke D, et al: Cerebral oxygen saturation assessed by near-infrared spectroscopy during coronary artery bypass grafting and early postoperative cognitive function. Ann Thorac Surg 74:109, 2002.

257. Janelle GM, Mnookin S, Gravenstein N, et al: Unilateral cerebral oxygen desaturation during emergent repair of a DeBakey type 1 aortic dissection: Potential aversion of a major catastrophe. Anesthesiology 96:1263, 2002.

258. Brown R, Wright G, Royston D: A comparison of two systems for assessing cerebral venous oxyhaemoglobin saturation during cardiopulmonary bypass in humans. Anaesthesia 48:697, 1993.

259. Daubeney PE, Smith DC, Pilkington SN, et al: Cerebral oxygenation during paediatric cardiac surgery: Identification of vulnerable periods using near-infrared spectroscopy. Eur J Cardiothorac Surg 13:370, 1998.

260. Kadoi Y, Kawahara F, Saito S, et al: Effects of hypothermic and normothermic cardiopulmonary bypass on brain oxygenation. Ann Thorac Surg 68:34, 1999.

261. Germon TJ, Young AE, Manara AR, et al: Extracerebral absorption of near-infrared light influences the detection of increased cerebral oxygenation monitored by near-infrared spectroscopy. J Neurol Neurosurg Psychiatry 58:477, 1995.

262. Fearn SJ, Picton AJ, Mortimer AJ, et al: The contribution of the external carotid artery to cerebral perfusion in carotid disease. J Vasc Surg 31:989, 2000.

263. Samra SK, Stanley JC, Zelenock GB, et al: An assessment of contributions made by extracranial tissues during cerebral oximetry. J Neurosurg Anesthesiol 11:1, 1999.

264. Clark DL, Rosner BS: Neurophysiologic effects of general anesthetics. Anesthesiology 38:564, 1973.

Previous Next