|
|
REFERENCES
151.
Schubert A, Peterson DO, Drummond JC, et al:
The effect of high-dose fentanyl on human median nerve somatosensory evoked responses.
Anesth Analg 65:S136, 1986.
152.
Grundy BL, Brown RH: Meperidine enhances somatosensory
cortical evoked potentials. Electroencephalogr Clin Neurophysiol 50:177, 1980.
153.
Samra SK, Lilly DJ, Rush NL, et al: Fentanyl
anesthesia and human brain-stem auditory evoked potentials. Anesthesiology 61:261,
1984.
154.
Eng DY, Dong WK, Bledsoe SW, et al: Electrical
and pathological correlates of brain hypoxia during hypotension. Anesthesiology
53:S92, 1980.
155.
Kobrine AI, Evans DE, Rizzoli HV: Relative vulnerability
of the brain and spinal cord to ischemia. J Neurol Sci 45:65, 1980.
156.
Bunegin L, Albin MS, Helsel P, et al: Evoked
responses during trimethaphan hypotension. Anesthesiology 55:A232, 1981.
157.
Grundy BL, Nash CL, Brown RH: Arterial pressure
manipulation alters spinal cord function during correction of scoliosis. Anesthesiology
54:249, 1981.
158.
Russ W, Kling D, Loesevitz A, et al: Effect of
hypothermia on visual evoked potential (VEP) in humans. Anesthesiology 61:207, 1984.
159.
Stockard JJ, Sharbrough FW, Tinker JA: Effects
of hypothermia on the human brainstem auditory response. Ann Neurol 3:368, 1978.
160.
Spetzler RF, Hadley MN, Rigamonti D, et al: Aneurysms
of the basilar artery treated with circulatory arrest, hypothermia, and barbiturate
cerebral protection. J Neurosurg 68:868, 1988.
161.
Dubois M, Loppola R, Buchsbaum MS, et al: Somatosensory
evoked potentials during whole body hyperthermia in humans. Electroencephalogr Clin
Neurophysiol 52:157, 1981.
162.
Nakagawa Y, Ohtsuka T, Tsura M, et al: Effects
of mild hypercapnia on somatosensory evoked potentials in experimental cerebral ischemia.
Stroke 25:275, 1984.
163.
Grundy BL, Heros RC, Tung AS, et al: Intraoperative
hypoxia detected by evoked potential monitoring. Anesth Analg 60:437, 1981.
164.
Nagao S, Roccaforte P, Moody RA: The effects
of isovolemic hemodilution and reinfusion of packed erythrocytes on somatosensory
and visual evoked potentials. J Surg Res 25:S30, 1978.
165.
Harper CM, Daube RJ: Surgical monitoring with
evoked potentials: The Mayo Clinic experience. In
Desmedt JE (ed): Neuromonitoring in Surgery. New York, Elsevier Science, 1989,
p 275.
166.
Harner SG, Daube JR, Beatty CW: Improved preservation
of facial nerve function with use of electrical monitoring during removal of acoustic
neuromas. Mayo Clin Proc 62:92, 1987.
167.
Harner SG, Daube JR, Ebersold MJ: Electrophysiologic
monitoring of facial nerve during temporal bone surgery. Laryngoscope 96:65, 1986.
168.
Acoustic neuroma. Consens Statement 9:1, 1991.
169.
Miller AR, Jannetta PJ: Microvascular decompression
in hemifacial spasm: Intraoperative electrophysiological observations. Neurosurgery
16:612, 1985.
170.
Lennon RL, Hosking MP, Daube JR, et al: Effect
of partial neuromuscular blockade on intraoperative electromyography in patients
undergoing resection of acoustic neuroma. Anesth Analg 75:729, 1992.
171.
Zentner J, Kiss I, Ebner A: Influence of anesthetics—nitrous
oxide in particular—on electromyographic response evoked by transcranial electrical
stimulation of the cortex. Neurosurgery 24:253, 1989.
172.
Zentner J, Abner A: Nitrous oxide suppresses
the electromyographic response evoked by electrical stimulation of the motor cortex.
Neurosurgery 24:60, 1989.
173.
Kline DG, Kim D, Midha R, et al: Management and
results of sciatic nerve injuries: A 24-year experience. J Neurosurg 89:13, 1998.
174.
Kim DH, Cho YJ, Tiel RL, et al: Outcomes of surgery
in 1019 brachial plexus lesions treated at Louisiana State University Health Sciences
Center. J Neurosurg 98:1005, 2003.
175.
Levy WJ, York DH, McCaffrey M, et al: Motor evoked
potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery
15:287, 1984.
176.
Legatt AD: Current practice of motor evoked potential
monitoring: Results of a survey. J Clin Neurophysiol 19:454, 2002.
177.
MacDonald DB, Al Zayed Z, Khoudeir I, et al:
Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor
and cortical somatosensory-evoked potentials from the lower and upper extremities.
Spine 28:194, 2003.
178.
Szelenyi A, Bueno de Camargo A, Flamm E, et al:
Neurophysiological criteria for intraoperative prediction of pure motor hemiplegia
during aneurysm surgery: Case report. J Neurosurg 99:575, 2003.
179.
Meylaerts S, Jacobs MJ, van Iterson V, et al:
Comparison of transcranial motor evoked potentials and somatosensory evoked potentials
during thoracoabdominal aortic aneurysm repair. Ann Surg 230:742, 1999.
180.
Pelosi L, Lamb J, Grevitt M, et al: Combined
monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery.
Clin Neurophysiol 113:1082, 2002.
181.
Zentner J: Motor evoked potential monitoring
during neurosurgical operations on the spinal cord. Neurosurg Rev 14:29, 1991.
182.
Owen JH, Laschinger J, Bridwell K, et al: Sensitivity
and specificity of somatosensory and neurogenic-motor evoked potentials in animals
and humans. Spine 13:1111, 1988.
183.
Edmonds HL, Paloheimo MPJ, Backman MH, et al:
Transcranial magnetic motor evoked potentials for functional monitoring of motor
pathways during scoliosis surgery. Spine 14:683, 1989.
184.
Boyd SG, Rothwell JC, Cowan JMA, et al: A method
of monitoring function in corticospinal pathways during scoliosis surgery with a
note on motor conduction velocities. J Neurol Neurosurg Psychiatry 49:251, 1986.
185.
Elmore JR, Gloviczki P, Harper CM, et al: Failure
of motor evoked potentials to predict neurologic outcome in experimental thoracic
aortic occlusion. J Vasc Surg 14:131, 1991.
186.
Reuter DG, Tacker WA, Badylak SF, et al: Correlation
of motor-evoked potential response to ischemic spinal cord damage. J Thorac Cardiovasc
Surg 104:262, 1992.
187.
Dong CC, MacDonald DB, Janusz MT: Intraoperative
spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery.
Ann Thorac Surg 74:S1873, 2002.
188.
Guerit JM, Dion RA: State-of-the-art of neuromonitoring
for prevention of immediate and delayed paraplegia in thoracic and thoracoabdominal
aorta surgery. Ann Thorac Surg 74:S1867, 2002.
189.
Jacobs MJ, Elenbaas TW, Schurink GW, et al: Assessment
of spinal cord integrity during thoracoabdominal aortic aneurysm repair. Ann Thorac
Surg 74:S1864, 2002.
190.
MacDonald DB, Janusz M: An approach to intraoperative
neurophysiologic monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol
19:43, 2002.
191.
Meylaerts SA, Jacobs MJ, van Iterson V, et al:
Comparison of transcranial motor evoked potentials and somatosensory evoked potentials
during thoracoabdominal aortic aneurysm repair. Ann Surg 230:742, 1999.
192.
de Haan P, Kalkman CJ, Jacobs MJ: Spinal cord
monitoring with myogenic motor evoked potentials: Early detection of spinal cord
ischemia as an integral part of spinal cord protective strategies during thoracoabdominal
aneurysm surgery. Semin Thorac Cardiovasc Surg 10:19, 1998.
193.
Owen JH, Bridwell KH, Grubb R, et al: The clinical
application of neurogenic motor evoked potentials to monitor spinal cord function
during surgery. Spine 16(Suppl):S385, 1991.
194.
Darden BV 2nd, Hatley MK, Owen JH: Neurogenic
motor evoked-potential monitoring in anterior cervical surgery. J Spinal Disord
9:485, 1996.
195.
Pereon Y, Bernard JM, Fayet G, et al: Usefulness
of neurogenic motor evoked potentials for spinal cord monitoring: Findings in 112
consecutive patients undergoing surgery for spinal deformity. Electroencephalogr
Clin Neurophysiol 108:17, 1998.
196.
Toleikis JR, Skelly JP, Carlvin AO, et al: Spinally
elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol
111:736, 2000.
197.
Jellinek D, Jewkes D, Symon L: Noninvasive intraoperative
monitoring of motor evoked potentials under propofol anesthesia: Effects of spinal
surgery on the amplitude and latency of motor evoked potentials. Neurosurgery 29:551,
1991.
198.
Taniguchi M, Nadstawek J, Langenbach U, et al:
Effects of four intravenous anesthetic agents on motor evoked potentials elicited
by magnetic transcranial stimulation. Neurosurgery 33:407, 1993.
199.
Ubags LH, Kalkman CJ, Been HD, et al: The use
of ketamine or etomidate to supplement sufentanil/N2
O anesthesia does
not disrupt monitoring of myogenic transcranial motor evoked responses. J Neurosurg
Anesthesiol 9:228, 1997.
200.
Kalkman CJ, Drummond JC, Patel PM, et al: Effects
of droperidol, pentobarbital and ketamine on myogenic motor evoked responses in humans.
Neurosurgery 35:1066, 1994.
201.
DeWitt LD, Wechsler LR: Transcranial Doppler.
Stroke 19:915, 1988.
202.
Sloan TB, Heyer EJ: Anesthesia for intraoperative
neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19:430, 2002.
203.
Zentner J, Thees C, Pechstein U, et al: Influence
of nitrous oxide on motor-evoked potentials. Spine 22:1002, 1997.
204.
Nathan N, Tabaraud F, Lacroix F, et al: Influence
of propofol concentrations on multipulse transcranial motor evoked potentials. Br
J Anaesth 91:493, 2003.
205.
Ghaly RF, Ham JH, Lee JJ: High-dose ketamine
hydrochloride maintains somatosensory and magnetic motor evoked potentials in primates.
Neurol Res 23:881, 2001.
206.
Scheufler KM, Zentner J: Total intravenous anesthesia
for intraoperative monitoring of the motor pathways: An integral view combining
clinical and experimental data. J Neurosurg 96:571, 2002.
207.
Taniguchi M, Nadstawek J, Langenbach U, et al:
Effects of four intravenous anesthetic agents on motor evoked potentials elicited
by magnetic transcranial stimulation. Neurosurgery 33:407, 1993.
208.
Ubags LH, Kalkman CJ, Been HD, et al: The use
of ketamine or etomidate to supplement sufentanil/N2
O anesthesia does
not disrupt monitoring of myogenic transcranial motor evoked responses. J Neurosurg
Anesthesiol 9:228, 1997.
209.
Yang LH, Lin SM, Lee WY, et al: Intraoperative
transcranial electrical motor evoked potential monitoring during spinal surgery under
intravenous ketamine or etomidate anesthesia. Acta Neurochir (Wien) 127:191, 1994.
210.
Ubags LH, Kalkman CJ, Been HD, et al: A comparison
of myogenic motor evoked responses to electrical and magnetic transcranial stimulation
during nitrous oxide/opioid anesthesia. Anesth Analg 88:568, 1999.
211.
Pechstein U, Nadstawek J, Zentner J, et al: Isoflurane
plus nitrous oxide versus propofol for recording of motor evoked potentials after
high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol
108:175, 1998.
212.
Pelosi L, Stevenson M, Hobbs GJ, et al: Intraoperative
motor evoked potentials to transcranial electrical stimulation during two anaesthetic
regimens. Clin Neurophysiol 112:1076, 2001.
213.
Ubaga LH, Kalkman CJ, Been HD: Influence of isoflurane
on myogenic motor evoked potentials to single and multiple transcranial stimuli during
nitrous oxide/opioid anesthesia. Neurosurgery 43:90, 1998.
214.
Halsey JH, McDowell HA, Gelman S: Transcranial
Doppler and rCBF compared in carotid endarterectomy. Stroke 17:1206, 1986.
215.
Molloy J, Markus HS: Asymptomatic embolization
predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke 30:1440,
1999.
216.
Ackerstaff RG, Moons KG, van de Vlasakker CJ,
et al: Association of intraoperative transcranial Doppler monitoring variables with
stroke from carotid endarterectomy. Stroke 31:1817, 2000.
217.
Laman DM, Wieneke GH, van Duijn H, et al: High
embolic rate early after carotid endarterectomy is associated with early cerebrovascular
complications, especially in women. J Vasc Surg 36:278, 2002.
218.
Munts AG, Mess WH, Bruggemans EF, et al: Feasibility
and reliability of on-line automated microemboli detection after carotid endarterectomy:
A transcranial Doppler study. Eur J Vasc Endovasc Surg 25:262, 2003.
219.
Levi CR, O'Malley HM, Fell G, et al: Transcranial
Doppler detected cerebral microembolism following carotid endarterectomy. High microembolic
signal loads predict postoperative cerebral ischaemia. Brain 120(Pt 4):621, 1997.
220.
Levi CR, Roberts AK, Fell G, et al: Transcranial
Doppler microembolus detection in the identification of patients at high risk of
perioperative stroke. Eur J Vasc Endovasc Surg 14:170, 1997.
221.
Smith JL, Evans DH, Gaunt ME, et al: Experience
with transcranial Doppler monitoring reduces the incidence of particulate embolization
during carotid endarterectomy. Br J Surg 85:56, 1998.
222.
van der Linden J, Casimir AH: When do cerebral
emboli occur during open heart operations? A transcranial Doppler study. Ann Thorac
Surg 51:237, 1991.
223.
Pugsley W, Klinger L, Paschalis C, et al: The
impact of microemboli during cardiopulmonary bypass on neuropsychological functioning.
Stroke 25:1393, 1994.
224.
Clark RE, Brillman J, Davis DA, et al: Microemboli
during coronary artery bypass grafting. J Thorac Cardiovasc Surg 109:249, 1995.
225.
Fearn SJ, Pole R, Burgess M, Ray SG, et al: Cerebral
embolisation during modern cardiopulmonary bypass. Eur J Cardiothorac Surg 20:1163,
2001.
226.
Borger MA, Djaiani G, Fedorko L, et al: Reduction
of cerebral emboli during cardiac surgery: Influence of surgeon and perfusionist
feedback. Heart Surg Forum 6:204, 2003.
227.
Groom RC, Likosky DS, O'Connor GT, et al: Identification
of techniques associated with changes in embolic count, hemodynamics and cerebral
desaturation. II. Perfusion. Heart Surg Forum 6:205, 2003.
228.
Sloan MA, Haley EC, Kassell NF, et al: Sensitivity
and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm
following subarachnoid hemorrhage. Neurology 39:1514, 1989.
229.
Sekhar LN, Wechsler LR, Yonas H, et al: Value
of transcranial Doppler examination in the diagnosis of cerebral vasospasm after
subarachnoid hemorrhage. Neurosurgery 22:813, 1988.
230.
Suarez JI, Qureshi AI, Yahia AB, et al: Symptomatic
vasospasm diagnosis after subarachnoid hemorrhage: Evaluation of transcranial Doppler
ultrasound and cerebral angiography as related to compromised vascular distribution.
Crit Care Med 30:1348, 2002.
231.
Topcuoglu MA, Pryor JC, Ogilvy CS, et al: Cerebral
vasospasm following subarachnoid hemorrhage. Curr Treat Options Cardiovasc Med 4:373,
2002.
232.
Jarus-Dziedzic K, Juniewicz H, Wronski J, et al:
The relation between cerebral blood flow velocities as measured by TCD and the incidence
of delayed ischemic deficits: A prospective study after subarachnoid hemorrhage.
Neurol Res 24:582, 2002.
233.
Aaslid R: Transcranial Doppler assessment of
cerebral vasospasm. Eur J Ultrasound 16:3, 2002.
234.
Mascia L, Fedorko L, terBrugge K, et al: The
accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal
subarachnoid hemorrhage. Intensive Care Med 29:1088, 2003.
235.
Petty GW, Mohr JP, Pedley T, et al: The role
of transcranial Doppler in confirming brain death. Neurology 40:300, 1990.
236.
Fortune JB, Feustel PJ, Graca L, et al: Effect
of hyperventilation, mannitol, and ventriculostomy drainage on cerebral blood flow
after head injury. J Trauma 39:1091, 1995.
237.
Skippen P, Seear M, Poskitt K, et al: Effect
of hyperventilation on regional cerebral blood flow in head-injured children. Crit
Care Med 25:1402, 1997.
238.
Imberti R, Bellinzona G, Langer M: Cerebral tissue
PO2
and SjvO2
changes during moderate hyperventilation in patients with severe traumatic brain
injury. J Neurosurg 96:97, 2002.
239.
Coles JP, Minhas PS, Fryer TD, et al: Effect
of hyperventilation on cerebral blood flow in traumatic head injury: Clinical relevance
and monitoring correlates. Crit Care Med 30:1950, 2002.
240.
Williams IM, Picton A, Farrell A, et al: Light-reflective
cerebral oximetry and jugular bulb venous oxygen saturation during carotid endarterectomy.
Br J Surg 81:1291, 1994.
241.
Gopinath SP, Cormio M, Ziegler J, et al: Intraoperative
jugular desaturation during surgery for traumatic intracranial hematomas. Anesth
Analg 83:1014, 1996.
242.
Unterberg AW, Kiening KL, Härtl R, et al:
Multimodal monitoring in patients with head injury: Evaluation of the effects of
treatment on cerebral oxygenation. J Trauma 42:S32, 1997.
243.
Matta BF, Lam AM: The rate of blood withdrawal
affects the accuracy of jugular venous bulb oxygen saturation measurements. Anesthesiology
86:806, 1997.
244.
Moss E, Dearden NM, Berridge JC: Effects of changes
in mean arterial pressure on SjO2
during
cerebral aneurysm surgery. Br J Anaesth 75:527, 1995.
245.
Croughwell ND, White WD, Smith LR, et al: Jugular
bulb saturation and mixed venous saturation during cardiopulmonary bypass. J Card
Surg 10:503, 1995.
246.
Smythe PR, Samra SK: Monitors of cerebral oxygenation.
Anesthesiol Clin North Am 20:293, 2002.
247.
Rampil IJ, Litt L, Mayevsky A: Correlated, simultaneous,
multiple-wavelength optical monitoring in vivo of localized cerebrocortical NADH
and brain microvessel hemoglobin oxygen saturation. J Clin Monit 8:216, 1992.
248.
Dunham CM, Sosnowski C, Porter JM, et al: Correlation
of noninvasive cerebral oximetry with cerebral perfusion in the severe head injured
patient: A pilot study. J Trauma 52:40, 2002.
249.
Buchner K, Meixensberger J, Dings J, et al: Near-infrared
spectroscopy—Not useful to monitor cerebral oxygenation after severe brain
injury. Zentralbl Neurochir 61:69, 2000.
250.
Macmillan CS, Andrews PJ: Cerebrovenous oxygen
saturation monitoring: Practical considerations and clinical relevance. Intensive
Care Med 26:1028, 2000.
251.
McLeod AD, Igielman F, Elwell C, et al: Measuring
cerebral oxygenation during normobaric hyperoxia: A comparison of tissue microprobes,
near-infrared spectroscopy, and jugular venous oximetry in head injury. Anesth Analg
97:851, 2003.
252.
Kirkpatric PJ, Smielewski P, Czosnyka M, et al:
Near-infrared spectroscopy use in patients with head injury. J Neurosurg 83:963,
1995.
253.
Samra SK, Dy EA, Welch K, et al: Evaluation of
a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy.
Anesthesiology 93:964, 2000.
254.
Grubhofer G, Lassnigg A, Manlik F, et al: The
contribution of extracranial blood oxygenation on near-infrared spectroscopy during
carotid thromboendarterectomy. Anaesthesia 52:116, 1997.
255.
Beese U, Langer H, Lang W, et al: Comparison
of near-infrared spectroscopy and somatosensory evoked potentials for the detection
of cerebral ischemia during carotid endarterectomy. Stroke 29:2032, 1998.
256.
Reents W, Muellges W, Franke D, et al: Cerebral
oxygen saturation assessed by near-infrared spectroscopy during coronary artery bypass
grafting and early postoperative cognitive function. Ann Thorac Surg 74:109, 2002.
257.
Janelle GM, Mnookin S, Gravenstein N, et al:
Unilateral cerebral oxygen desaturation during emergent repair of a DeBakey type
1 aortic dissection: Potential aversion of a major catastrophe. Anesthesiology
96:1263, 2002.
258.
Brown R, Wright G, Royston D: A comparison of
two systems for assessing cerebral venous oxyhaemoglobin saturation during cardiopulmonary
bypass in humans. Anaesthesia 48:697, 1993.
259.
Daubeney PE, Smith DC, Pilkington SN, et al:
Cerebral oxygenation during paediatric cardiac surgery: Identification of vulnerable
periods using near-infrared spectroscopy. Eur J Cardiothorac Surg 13:370, 1998.
260.
Kadoi Y, Kawahara F, Saito S, et al: Effects
of hypothermic and normothermic cardiopulmonary bypass on brain oxygenation. Ann
Thorac Surg 68:34, 1999.
261.
Germon TJ, Young AE, Manara AR, et al: Extracerebral
absorption of near-infrared light influences the detection of increased cerebral
oxygenation monitored by near-infrared spectroscopy. J Neurol Neurosurg Psychiatry
58:477, 1995.
262.
Fearn SJ, Picton AJ, Mortimer AJ, et al: The
contribution of the external carotid artery to cerebral perfusion in carotid disease.
J Vasc Surg 31:989, 2000.
263.
Samra SK, Stanley JC, Zelenock GB, et al: An
assessment of contributions made by extracranial tissues during cerebral oximetry.
J Neurosurg Anesthesiol 11:1, 1999.
264.
Clark DL, Rosner BS: Neurophysiologic effects
of general anesthetics. Anesthesiology 38:564, 1973.