|
|
REFERENCES
751.
Guzzetta NA, Ramsay JG, Bailey JM, Palmer-Steele
C: Clinical evaluation of the esophageal Doppler monitor for continuous cardiac
output monitoring. Anesth Analg 86:SCA82, 1998.
752.
Kuck K, Fine PG, Westenskow DR: Evaluation of
a new esophageal Doppler cardiac output monitor. J Clin Monit 13:424, 1997.
753.
Bengur AR, Meliones JN: Continuous monitoring
of cardiac output: How many assumptions are valid? Crit Care Med 28:2168–2169,
2000.
754.
Eachempati SR, Young C, Alexander J, et al: The
clinical use of an esophageal Doppler monitor for hemodynamic monitoring in sepsis.
J Clin Monit 15:223–225, 1999.
755.
Gan TJ, Arrowsmith JE: The oesophageal Doppler
monitor. BMJ 315:893–894, 1997.
756.
Gan TJ, Wakeling H, Hardman D, et al: Intraoperative
volume expansion guided by esophageal Doppler reduces the incidence of gastric mucosal
hypoperfusion and may be associated with improved outcome following major surgery.
Anesthesiology 87:A391, 1997.
757.
Sinclair S, James S, Singer M: Intraoperative
intravascular volume optimisation and length of hospital stay after repair of proximal
femoral fracture: Randomised controlled trial. BMJ 315:909–912, 1997.
758.
Kubicek WG, Karnegis JN, Patterson RP: Development
and evaluation of an impedance cardiac output system. Aviat Space Environ Med 37:1208–1212,
1966.
759.
Bernstein DP: A new stroke volume equation for
thoracic electrical bioimpedance: Theory and rationale. Crit Care Med 14:904–909,
1986.
760.
Mattar JA: Noninvasive cardiac output determination
by thoracic electrical bioimpedance. Intensive Crit Care Dig 7:14–18, 1988.
761.
Appel PL, Kram HB, MacKabee J: Comparison of
measurements of cardiac output by bioimpedance and thermodilution in severely ill
surgical patients. Crit Care Med 14:933–935, 1986.
762.
Bernstein DP: Continuous noninvasive real-time
monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance.
Crit Care Med 14:898–901, 1986.
763.
Donovan KD, Dobb GJ, Woods WPD, Hockings BE:
Comparison of transthoracic electrical impedance and thermodilution methods for measuring
cardiac output. Crit Care Med 14:1038–1044, 1986.
764.
Thomas AN, Ryan J, Doran BR, Pollard BJ: Bioimpedance
versus thermodilution cardiac output measurement: The Bomed NCCOM3 after coronary
bypass surgery. Intensive Care Med 17:383–386, 1991.
765.
Tremper KK, Hufstedler SM, Barker SJ, et al:
Continuous noninvasive estimation of cardiac output by electrical bioimpedance:
An experimental study in dogs. Crit Care Med 14:231–233, 1986.
766.
Young JD, McQuillan P: Comparison of thoracic
electrical bioimpedance and thermodilution for the measurement of cardiac index in
patients with severe sepsis. Br J Anaesth 70:58–62, 1993.
767.
Shoemaker WC, Wo CCJ, Bishop MH, et al: Multicenter
trial of a new thoracic electrical bioimpedance device for cardiac output estimation.
Crit Care Med 22:1907–1912, 1994.
768.
Thangathurai D, Charbonnet C, Roessler P, et al:
Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic
bioimpedance device. J Cardiothorac Vasc Anesth 11:440–444, 1997.
769.
Sageman WS, Riffenburgh RH, Spiess BD: Equivalence
of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery.
J Cardiothorac Vasc Anesth 16:8–14, 2002.
770.
Haryadi DG, Westenskow DR, Critchley LAH, et al:
Evaluation of a new advanced thoracic bioimpedance device for estimation of cardiac
output. J Clin Monit Comput 15:131–138, 1999.
771.
Wallace AW, Salahieh A, Lawrence A, et al: Endotracheal
cardiac output monitor. Anesthesiology 92:178–189, 2000.
772.
Orr J, Westenskow D, Kofoed S, Turner R: A non-invasive
cardiac output system using the partial re breathing Fick method. J Clin Monit 12:464–465,
1996.
773.
Botero M, Lobato EB: Advances in noninvasive
cardiac output monitoring: An update. J Cardiothorac Vasc Anesth 15:631–640,
2001.
774.
Jaffe MB: Partial CO2
rebreathing
cardiac output—operating principles of the NICO system. J Clin Monit 15:387–401,
1999.
775.
Capek JM, Roy RJ: Noninvasive measurement of
cardiac output using partial CO2
rebreathing. IEEE Trans Biomed Eng 35:653–661,
1988.
776.
Gedeon A, Forslund L, Hedenstierna G, Romano E:
A new method for noninvasive bedside determination of pulmonary blood flow. Med
Biol Eng Comput 18:411–418, 1980.
777.
Band DM, Linton RAF, O'Brien TK, et al: The shape
of indicator dilution curves used for cardiac output measurement in man. J Physiol
498:225–229, 1997.
778.
Linton RAF, Band DM, Haire KM: A new method of
measuring cardiac output in man using lithium dilution. Br J Anaesth 71:262–266,
1993.
779.
Linton RAF, Linton NWF, Band DM: A new method
of analysing indicator dilution curves. Cardiovasc Res 30:930–938, 1995.
780.
Kurita T, Morita K, Kato S, et al: Comparison
of the accuracy of the lithium dilution technique with the thermodilution technique
for measurement of cardiac output. Br J Anaesth 79:770–775, 1997.
781.
Linton R, Band D, O'Brien T, et al: Lithium dilution
cardiac output measurement: A comparison with thermodilution. Crit Care Med 25:1796–1800,
1997.
782.
Garcia-Rodriguez C, Pittman J, Cassell CH, et
al: Lithium dilution cardiac output measurement: A clinical assessment of central
venous and peripheral venous indicator injection. Crit Care Med 30:2199–2204,
2002.
783.
Jonas MM, Kelly FE, Linton RAF, et al: A comparison
of lithium dilution cardiac output measurements made using central and antecubital
venous injection of lithium chloride. J Clin Monit 15:525–528, 1999.
784.
Kurita T, Morita K, Kato S, et al: Lithium dilution
cardiac output measurements using a peripheral injection site: Comparison with central
injection technique and thermodilution. J Clin Monit 15:279–285, 1999.
785.
English JB, Hodges MR, Sentker C, et al: Comparison
of aortic pulse-wave contour analysis and thermodilution methods of measuring cardiac
output during anesthesia in the dog. Anesthesiology 52:56–61, 1980.
786.
Tannenbaum GA, Mathews D, Weissman C: Pulse contour
cardiac output in surgical intensive care unit patients. J Clin Anesth 5:471–478,
1993.
787.
Gratz I, Kraidin J, Jacobi AG, et al: Continuous
noninvasive cardiac output as estimated from the pulse contour curve. J Clin Monit
8:20–27, 1992.
788.
Hirschl MM, Binder M, Gwechenberger M, et al:
Noninvasive assessment of cardiac output in critically ill patients by analysis
of the finger blood pressure waveform. Crit Care Med 25:1909–1914, 1997.
789.
Lieshout JJ, Wesseling KH: Continuous cardiac
output by pulse contour analysis? Br J Anaesth 86:467–469, 2001.
790.
Zollner C, Haller M, Weis M, et al: Beat-to beat
measurement of cardiac output by intravascular pulse contour analysis: A prospective
criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc
Anesth 14:125–129, 2000.
791.
Buhre W, Weyland A, Kazmaier S, et al: Comparison
of cardiac output assessed by pulse-contour analysis and thermodilution in patients
undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac
Vasc Anesth 13:437–440, 1999.
792.
Godje O, Thiel C, Lamm, P, et al: Less invasive,
continuous hemodynamic monitoring during minimally invasive coronary surgery. Ann
Thorac Surg 68:1532–1536, 1999.
793.
Goedje O, Hoeke K, Lichtwarck-Aschoff M, et al:
Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour
analysis: Comparison with pulmonary arterial thermodilution. Crit Care Med 27:2407–2412,
1999.
794.
Rödig G, Prasser C, Keyl C, et al: Continuous
cardiac output measurement: Pulse contour analysis vs thermodilution technique in
cardiac surgical patients. Br J Anaesth 82:525–530, 1999.
795.
Linton NWF, Linton RAF: Estimation of changes
in cardiac output from the arterial blood pressure waveform in the upper limb. Br
J Anaesth 86:486–496, 2001.
796.
Sakka SG, Reinhart K, Meier-Hellmann A: Comparison
of pulmonary artery and arterial thermodilution cardiac output in critically ill
patients. Intensive Care Med 25:843–846, 1999.
797.
Pittman JA, Sum Ping J, Sherwood M, et al: Continuous
cardiac output measurement by arterial pressure waveform analysis: A 24-hour comparison
with the lithium dilution indicator method. Anesth Analg 93:SCA71, 2002.
798.
Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ:
Intrathoracic blood volume accurately reflects circulatory volume status in critically
ill patients with mechanical ventilation. Intensive Care Med 18:142–147, 1992.
799.
Preisman S, Pfeiffer U, Lieberman N, Perel A:
New monitors of intravascular volume: A comparison of arterial pressure waveform
analysis and the intrathoracic blood volume. Intensive Care Med 23:651–657,
1997.
800.
Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann
A: Comparison between intrathoracic blood volume and cardiac filling pressures in
the early phase of hemodynamic instability of patients with sepsis or septic shock.
J Crit Care 14:78–83, 1999.
801.
Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ: Central
venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume,
and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit
Care 11:180–188, 1996.
802.
Godje O, Peyerl M, Seebauer T, et al: Central
venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes
as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13:533–539,
1998.
803.
Hoeft A, Schorn B, Weyland A, et al: Bedside
assessment of intravascular volume status in patients undergoing coronary bypass
surgery. Anesthesiology 81:76–86, 1994.
804.
Barker SJ: Blood volume measurement. The next
intraoperative monitor? Anesthesiology 89:1310–1312, 1998.
805.
Haruna M, Kumon K, Yahagi N, et al: Blood volume
measurement at the bedside using ICG pulse spectrophotometry. Anesthesiology 89:1322–1328,
1998.
806.
Iijima T, Aoyagi T, Iwao Y, et al: Cardiac output
and circulating blood volume analysis by pulse dye-densitometry. J Clin Monit 13:81–89,
1997.
807.
Iijima T, Iwao Y, Sankawa H: Circulating blood
volume measured by pulse dye-densitometry. Anesthesiology 89:1329–1335, 1998.
808.
Knichwitz G, Van Aken H, Brüssel T: Gastrointestinal
monitoring using measurement of intramucosal PCO2
.
Anesth Analg 87:134–142, 1998.
809.
Kolkman JJ, Zwaarekant LJ, Boshuizen K, et al:
In vitro evaluation of intragastric PCO2
measurement by air tonometry. J Clin Monit 13:115–119, 1997.
810.
Welsby I, Mythen MG: Gut perfusion during cardiac
surgery. Curr Opin Anesthesiol 10:34–39, 1997.
811.
Marik PE: Gastric intramucosal pH. A better
predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables
in patients with sepsis. Chest 104:225–229, 1993.
812.
Marshall JC: An intensivist's dilemma: Support
of the splanchnic circulation in critical illness. Crit Care Med 26:1637–1638,
1998.
813.
Silva E, DeBacker D, Créteur J, Vincent
J-L: Effects of vasoactive drugs on gastric intramucosal pH. Crit Care Med 26:1749–1758,
1998.
814.
Hirsh J: Heparin. N Engl J Med 324:1565–1574,
1991.
815.
Bull BS, Korpman RA, Huse WM, Briggs BD: Heparin
therapy during extracorporeal circulation. I. Problems inherent in existing protocols.
J Thorac Cardiovasc Surg 69:674–684, 1975.
816.
Metz S: Administration of protamine rather than
heparin in a patient undergoing normothermic cardiopulmonary bypass. Anesthesiology
80:691–694, 1994.
817.
Hattersley PG: Activated coagulation time of
whole blood. JAMA 196:150–154, 1966.
818.
Dietrich W, Jochum M: Effect of celite and kaolin
on activated clotting time in the presence of aprotinin: Activated clotting time
is reduced by binding of aprotinin to kaolin. J Thorac Cardiovasc Surg 109:177,
1995.
819.
Gravlee GP, Whitaker CL, Mark LJ, et al: Baseline
activated coagulation time should be measured after surgical incision. Anesth Analg
71:549–653, 1990.
820.
Ammar T, Fisher CF, Sarier K, Coller BS: The
effects of thrombocytopenia on the activated coagulation time. Anesth Analg 83:1185–1188,
1996.
821.
Moliterno DJ, Califf RM, Aguirre FV, et al: Effect
of platelet glycoprotein IIb/IIIa integrin blockade on activated clotting time during
percutaneous transluminal coronary angioplasty or directional atherectomy (The EPIC
Trial). Am J Cardiol 75:559–562, 1995.
822.
Moorehead MT, Westengard JC, Bull BS: Platelet
involvement in the activated clotting time of heparinized blood. Anesth Analg 63:394–398,
1984.
823.
Gravlee GP, Case LD, Angert KC, et al: Variability
of the activated coagulation time. Anesth Analg 67:469–472, 1988.
824.
Bode AP, Eick L: Lysed platelets shorten the
activated coagulation time (ACT) of heparinized blood. Am J Clin Pathol 91:430–434,
1989.
825.
Bennett JA, Horrow JC: Activated coagulation
time: One tube or two? J Cardiothorac Vasc Anesth 10:471–473, 1996.
826.
Baugh RF, Deemar KA, Zimmermann JJ: Heparinase
in the activated clotting time assay: Monitoring heparin-independent alteration
in coagulation function. Anesth Analg 74:201–205, 1992.
827.
Oberhardt BJ, Dermott SC, Taylor M, et al: Dry
reagent technology for rapid, convenient measurements of blood coagulation and fibrinolysis.
Clin Chem 37:520–526, 1991.
828.
Mertzlufft F, Koster A, Hansen R, et al: Reliability
of the heparin management test for monitoring high levels of unfractionated heparin.
In vitro findings in volunteers versus in vivo findings during cardiopulmonary bypass.
Anesthesiology 92:1594–1602, 2000.
829.
Watke CM, Kern FH, Schulman SR, et al: The heparin
management test (HMT): An improved method for monitoring anticoagulation during
pediatric cardiac surgery. Anesthesiology 89:A910, 1998.
830.
Koster A, Chew D, Grundel M, et al: Bivalrudin
monitored with the ecarin clotting time for anticoagulation during cardiopulmonary
bypass. Anesth Analg 96:383–386, 2003.
831.
Huyzen RJ, van Oeveren W, Wei F, et al: In vitro
effect of hemodilution on activated clotting time and high-dose thrombin time during
cardiopulmonary bypass. Ann Thorac Surg 62:533–537, 1996.
832.
Wang JS, Lin CY, Karp RB: Comparison of high-dose
thrombin time with activated clotting time for monitoring of anticoagulant effects
of heparin in cardiac surgical patients. Anesth Analg 79:9–13, 1994.
833.
Macik GB: Designing a point-of-care program for
coagulation testing. Arch Pathol Lab Med 119:929–938, 1995.
834.
Despotis GJ, Summerfield AL, Joist JH: Comparison
of activated coagulation time and whole blood heparin measurements with laboratory
plasma anti-Xa heparin concentration in patients having cardiac operations. J Thorac
Cardiovasc Surg 108:1076–1082, 1994.
835.
Despotis GJ, Joist HJ, Hogue CW Jr, et al: More
effective suppression of hemostatic system activation in patients undergoing cardiac
surgery by heparin dosing based on heparin blood concentrations rather than ACT.
Thromb Haemost 76:902–908, 1996.
836.
Koster A, Fischer T, Praus M, et al: Hemostatic
activation and inflammatory response during cardiopulmonary bypass: Impact of heparin
management. Anesthesiology 97:837–841, 2002.
837.
Despotis GJ, Joist JH, Hogue CW, et al: The impact
of heparin concentration and activated clotting time monitoring on blood conservation.
J Thorac Cardiovasc Surg 110:46–54, 1995.
838.
Wahr JA, Yun J-H, Yang VC, et al: A new method
of measuring heparin levels in whole blood by protamine titration using a heparin-responsive
electrochemical sensor. J Cardiothorac Vasc Anesth 10:447–450, 1996.
839.
Yang VC, Ma SC, Liu D, et al: A novel electrochemical
heparin sensor. ASAIO J 39:M195–M201, 1993.
840.
Hartert H: Blutgerninnungstudien mit der Thrombelastographic,
einen neuen Untersuchungsverfahren. Klin Wochenschr 16:257, 1948.
841.
Mallett SV, Cox DJA: Thromboelastography. Br
J Anaesth 69:307–313, 1992.
842.
Shenaq SA, Saleem A: Viscoelastic measurement
of clot formation: The Sonoclot. In Ellison N,
Jobes DR (eds): Effective Hemostasis in Cardiac Surgery. Philadelphia, WB Saunders,
1988, pp 183–193.
843.
Tuman KJ, Spiess BD, McCarthy RJ, Ivankovich AD:
Comparison of viscoelastic measures of coagulation after cardiopulmonary bypass.
Anesth Analg 69:69–75, 1989.
844.
Saleem A, Blifeld C, Saleh SA, et al: Viscoelastic
measurement of clot formation: A new test of platelet function. Ann Clin Lab Sci
13:115–124, 1983.
845.
Zuckerman L, Cohen E, Vagher JP, et al: Comparison
of thromboelastography with common coagulation tests. Thromb Haemost 46:752–756,
1981.
846.
Cammerer U, Dietrich W, Rampf T, et al: The predictive
value of modified computerized thromboelastography and platelet function analysis
for postoperative blood loss in routine cardiac surgery. Anesth Analg 96:51–67,
2003.
847.
Spiess BD, Tuman KJ, McCarthy RJ, et al: Thromboelastography
as an indicator of post-cardiopulmonary bypass coagulopathies. J Clin Monit 3:25–30,
1987.
848.
Royston D, von Kier S: Reduced haemostatic factor
transfusion using heparinase-modified thromboelastography during cardiopulmonary
bypass. Br J Anaesth 86:575–578, 2001.
849.
Nicholson NS, Panzer-Knodle SG, Haas NF, et al:
Assessment of platelet function assays. Am Heart J 135(5 Pt 2 Suppl):S170–S178,
1998.
850.
Despotis GJ, Levine V, Filos KS, et al: Evaluation
of a new point-of-care test that measures PAF-mediated acceleration of coagulation
in cardiac surgical patients. Anesthesiology 85:1311–1323, 1996.
851.
Ereth MH, Nuttall GA, Klindworth JT, et al: Does
the platelet-activated clotting test (HemoSTATUS) predict blood loss and platelet
dysfunction associated with cardiopulmonary bypass? Anesth Analg 85:259–264,
1997.
852.
Ereth MH, Nuttall GA, Santrach PJ, et al: The
relation between the platelet-activated clotting test (HemoSTATUS) and blood loss
after cardiopulmonary bypass. Anesthesiology 88:962–969, 1998.
853.
Coller BS, Lang D, Scudder LE: Rapid and simple
platelet function assay to assess GPIIb/IIIa receptor blockade. Circulation 95:860–867,
1997.
854.
Despotis GJ, Saleem R, Bigham M, Barnes P: Clinical
evaluation of a new, point-of-care hemocytometer. Crit Care Med 28:1185–1190,
2000.
855.
Lakkis NM, George S, Thomas E, et al: Use of
ICHOR-platelet works to assess platelet function in patients treated with GP IIb/IIIA
inhibitors. Cathet Cardiovasc Interv 53:346–351, 2001.
856.
Carville DGM, Schleckser PA, Guyer KE, et al:
Whole blood platelet function assay on the ICHOR point-of-care hematology analyzer.
J Extracorpor Technol 30:171–177, 1998.
857.
Kundu SK, Heilmann EJ, Sio R, et al: Description
of an in vitro platelet function analyzer—PFA-100. Semin Thromb Hemost 21:106–112,
1995.
858.
Fressinaud E, Veyradier A, Truchaud F, et al:
Screening for von Willebrand disease with a new analyzer using high shear stress:
A study of 60 cases. Blood 91:1325–1331, 1998.
859.
Mammen EF, Koets MH, Washington BC, et al: Hemostasis
changes during cardiopulmonary bypass surgery. Semin Thromb Hemost 11:281–292,
1985.
860.
Slaughter TF, Sreeram G, Sharma AD, et al: Reversible
shear-mediated platelet dysfunction during cardiac surgery as assessed by the PFA-100
platelet function analyzer. Blood Coagul Fibrinolysis 12:85–93, 2001.
861.
Carr MEJ: Development of platelet contractile
force as a research and clinical measure of platelet function. Cell Biochem Biophys
38:55–78, 2003.
862.
Greilich PE, Brouse CF, Beckam J, et al: Reductions
in platelet contractile force correlate with duration of cardiopulmonary bypass and
blood loss in patients undergoing cardiac surgery. Thromb Res 105:523–529,
2002.