Previous Next

REFERENCES

751. Guzzetta NA, Ramsay JG, Bailey JM, Palmer-Steele C: Clinical evaluation of the esophageal Doppler monitor for continuous cardiac output monitoring. Anesth Analg 86:SCA82, 1998.

752. Kuck K, Fine PG, Westenskow DR: Evaluation of a new esophageal Doppler cardiac output monitor. J Clin Monit 13:424, 1997.

753. Bengur AR, Meliones JN: Continuous monitoring of cardiac output: How many assumptions are valid? Crit Care Med 28:2168–2169, 2000.

754. Eachempati SR, Young C, Alexander J, et al: The clinical use of an esophageal Doppler monitor for hemodynamic monitoring in sepsis. J Clin Monit 15:223–225, 1999.

755. Gan TJ, Arrowsmith JE: The oesophageal Doppler monitor. BMJ 315:893–894, 1997.

756. Gan TJ, Wakeling H, Hardman D, et al: Intraoperative volume expansion guided by esophageal Doppler reduces the incidence of gastric mucosal hypoperfusion and may be associated with improved outcome following major surgery. Anesthesiology 87:A391, 1997.

757. Sinclair S, James S, Singer M: Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: Randomised controlled trial. BMJ 315:909–912, 1997.

758. Kubicek WG, Karnegis JN, Patterson RP: Development and evaluation of an impedance cardiac output system. Aviat Space Environ Med 37:1208–1212, 1966.

759. Bernstein DP: A new stroke volume equation for thoracic electrical bioimpedance: Theory and rationale. Crit Care Med 14:904–909, 1986.

760. Mattar JA: Noninvasive cardiac output determination by thoracic electrical bioimpedance. Intensive Crit Care Dig 7:14–18, 1988.

761. Appel PL, Kram HB, MacKabee J: Comparison of measurements of cardiac output by bioimpedance and thermodilution in severely ill surgical patients. Crit Care Med 14:933–935, 1986.

762. Bernstein DP: Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med 14:898–901, 1986.

763. Donovan KD, Dobb GJ, Woods WPD, Hockings BE: Comparison of transthoracic electrical impedance and thermodilution methods for measuring cardiac output. Crit Care Med 14:1038–1044, 1986.

764. Thomas AN, Ryan J, Doran BR, Pollard BJ: Bioimpedance versus thermodilution cardiac output measurement: The Bomed NCCOM3 after coronary bypass surgery. Intensive Care Med 17:383–386, 1991.

765. Tremper KK, Hufstedler SM, Barker SJ, et al: Continuous noninvasive estimation of cardiac output by electrical bioimpedance: An experimental study in dogs. Crit Care Med 14:231–233, 1986.

766. Young JD, McQuillan P: Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 70:58–62, 1993.

767. Shoemaker WC, Wo CCJ, Bishop MH, et al: Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation. Crit Care Med 22:1907–1912, 1994.

768. Thangathurai D, Charbonnet C, Roessler P, et al: Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic bioimpedance device. J Cardiothorac Vasc Anesth 11:440–444, 1997.

769. Sageman WS, Riffenburgh RH, Spiess BD: Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth 16:8–14, 2002.

770. Haryadi DG, Westenskow DR, Critchley LAH, et al: Evaluation of a new advanced thoracic bioimpedance device for estimation of cardiac output. J Clin Monit Comput 15:131–138, 1999.

771. Wallace AW, Salahieh A, Lawrence A, et al: Endotracheal cardiac output monitor. Anesthesiology 92:178–189, 2000.

772. Orr J, Westenskow D, Kofoed S, Turner R: A non-invasive cardiac output system using the partial re breathing Fick method. J Clin Monit 12:464–465, 1996.

773. Botero M, Lobato EB: Advances in noninvasive cardiac output monitoring: An update. J Cardiothorac Vasc Anesth 15:631–640, 2001.

774. Jaffe MB: Partial CO2 rebreathing cardiac output—operating principles of the NICO system. J Clin Monit 15:387–401, 1999.

775. Capek JM, Roy RJ: Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng 35:653–661, 1988.


1361


776. Gedeon A, Forslund L, Hedenstierna G, Romano E: A new method for noninvasive bedside determination of pulmonary blood flow. Med Biol Eng Comput 18:411–418, 1980.

777. Band DM, Linton RAF, O'Brien TK, et al: The shape of indicator dilution curves used for cardiac output measurement in man. J Physiol 498:225–229, 1997.

778. Linton RAF, Band DM, Haire KM: A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71:262–266, 1993.

779. Linton RAF, Linton NWF, Band DM: A new method of analysing indicator dilution curves. Cardiovasc Res 30:930–938, 1995.

780. Kurita T, Morita K, Kato S, et al: Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79:770–775, 1997.

781. Linton R, Band D, O'Brien T, et al: Lithium dilution cardiac output measurement: A comparison with thermodilution. Crit Care Med 25:1796–1800, 1997.

782. Garcia-Rodriguez C, Pittman J, Cassell CH, et al: Lithium dilution cardiac output measurement: A clinical assessment of central venous and peripheral venous indicator injection. Crit Care Med 30:2199–2204, 2002.

783. Jonas MM, Kelly FE, Linton RAF, et al: A comparison of lithium dilution cardiac output measurements made using central and antecubital venous injection of lithium chloride. J Clin Monit 15:525–528, 1999.

784. Kurita T, Morita K, Kato S, et al: Lithium dilution cardiac output measurements using a peripheral injection site: Comparison with central injection technique and thermodilution. J Clin Monit 15:279–285, 1999.

785. English JB, Hodges MR, Sentker C, et al: Comparison of aortic pulse-wave contour analysis and thermodilution methods of measuring cardiac output during anesthesia in the dog. Anesthesiology 52:56–61, 1980.

786. Tannenbaum GA, Mathews D, Weissman C: Pulse contour cardiac output in surgical intensive care unit patients. J Clin Anesth 5:471–478, 1993.

787. Gratz I, Kraidin J, Jacobi AG, et al: Continuous noninvasive cardiac output as estimated from the pulse contour curve. J Clin Monit 8:20–27, 1992.

788. Hirschl MM, Binder M, Gwechenberger M, et al: Noninvasive assessment of cardiac output in critically ill patients by analysis of the finger blood pressure waveform. Crit Care Med 25:1909–1914, 1997.

789. Lieshout JJ, Wesseling KH: Continuous cardiac output by pulse contour analysis? Br J Anaesth 86:467–469, 2001.

790. Zollner C, Haller M, Weis M, et al: Beat-to beat measurement of cardiac output by intravascular pulse contour analysis: A prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth 14:125–129, 2000.

791. Buhre W, Weyland A, Kazmaier S, et al: Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth 13:437–440, 1999.

792. Godje O, Thiel C, Lamm, P, et al: Less invasive, continuous hemodynamic monitoring during minimally invasive coronary surgery. Ann Thorac Surg 68:1532–1536, 1999.

793. Goedje O, Hoeke K, Lichtwarck-Aschoff M, et al: Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: Comparison with pulmonary arterial thermodilution. Crit Care Med 27:2407–2412, 1999.

794. Rödig G, Prasser C, Keyl C, et al: Continuous cardiac output measurement: Pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth 82:525–530, 1999.

795. Linton NWF, Linton RAF: Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth 86:486–496, 2001.

796. Sakka SG, Reinhart K, Meier-Hellmann A: Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25:843–846, 1999.

797. Pittman JA, Sum Ping J, Sherwood M, et al: Continuous cardiac output measurement by arterial pressure waveform analysis: A 24-hour comparison with the lithium dilution indicator method. Anesth Analg 93:SCA71, 2002.

798. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ: Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18:142–147, 1992.

799. Preisman S, Pfeiffer U, Lieberman N, Perel A: New monitors of intravascular volume: A comparison of arterial pressure waveform analysis and the intrathoracic blood volume. Intensive Care Med 23:651–657, 1997.

800. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A: Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14:78–83, 1999.

801. Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ: Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care 11:180–188, 1996.

802. Godje O, Peyerl M, Seebauer T, et al: Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13:533–539, 1998.

803. Hoeft A, Schorn B, Weyland A, et al: Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology 81:76–86, 1994.

804. Barker SJ: Blood volume measurement. The next intraoperative monitor? Anesthesiology 89:1310–1312, 1998.

805. Haruna M, Kumon K, Yahagi N, et al: Blood volume measurement at the bedside using ICG pulse spectrophotometry. Anesthesiology 89:1322–1328, 1998.

806. Iijima T, Aoyagi T, Iwao Y, et al: Cardiac output and circulating blood volume analysis by pulse dye-densitometry. J Clin Monit 13:81–89, 1997.

807. Iijima T, Iwao Y, Sankawa H: Circulating blood volume measured by pulse dye-densitometry. Anesthesiology 89:1329–1335, 1998.

808. Knichwitz G, Van Aken H, Brüssel T: Gastrointestinal monitoring using measurement of intramucosal PCO2 . Anesth Analg 87:134–142, 1998.

809. Kolkman JJ, Zwaarekant LJ, Boshuizen K, et al: In vitro evaluation of intragastric PCO2 measurement by air tonometry. J Clin Monit 13:115–119, 1997.

810. Welsby I, Mythen MG: Gut perfusion during cardiac surgery. Curr Opin Anesthesiol 10:34–39, 1997.

811. Marik PE: Gastric intramucosal pH. A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 104:225–229, 1993.

812. Marshall JC: An intensivist's dilemma: Support of the splanchnic circulation in critical illness. Crit Care Med 26:1637–1638, 1998.

813. Silva E, DeBacker D, Créteur J, Vincent J-L: Effects of vasoactive drugs on gastric intramucosal pH. Crit Care Med 26:1749–1758, 1998.

814. Hirsh J: Heparin. N Engl J Med 324:1565–1574, 1991.

815. Bull BS, Korpman RA, Huse WM, Briggs BD: Heparin therapy during extracorporeal circulation. I. Problems inherent in existing protocols. J Thorac Cardiovasc Surg 69:674–684, 1975.

816. Metz S: Administration of protamine rather than heparin in a patient undergoing normothermic cardiopulmonary bypass. Anesthesiology 80:691–694, 1994.

817. Hattersley PG: Activated coagulation time of whole blood. JAMA 196:150–154, 1966.

818. Dietrich W, Jochum M: Effect of celite and kaolin on activated clotting time in the presence of aprotinin: Activated clotting time is reduced by binding of aprotinin to kaolin. J Thorac Cardiovasc Surg 109:177, 1995.

819. Gravlee GP, Whitaker CL, Mark LJ, et al: Baseline activated coagulation time should be measured after surgical incision. Anesth Analg 71:549–653, 1990.
1362


820. Ammar T, Fisher CF, Sarier K, Coller BS: The effects of thrombocytopenia on the activated coagulation time. Anesth Analg 83:1185–1188, 1996.

821. Moliterno DJ, Califf RM, Aguirre FV, et al: Effect of platelet glycoprotein IIb/IIIa integrin blockade on activated clotting time during percutaneous transluminal coronary angioplasty or directional atherectomy (The EPIC Trial). Am J Cardiol 75:559–562, 1995.

822. Moorehead MT, Westengard JC, Bull BS: Platelet involvement in the activated clotting time of heparinized blood. Anesth Analg 63:394–398, 1984.

823. Gravlee GP, Case LD, Angert KC, et al: Variability of the activated coagulation time. Anesth Analg 67:469–472, 1988.

824. Bode AP, Eick L: Lysed platelets shorten the activated coagulation time (ACT) of heparinized blood. Am J Clin Pathol 91:430–434, 1989.

825. Bennett JA, Horrow JC: Activated coagulation time: One tube or two? J Cardiothorac Vasc Anesth 10:471–473, 1996.

826. Baugh RF, Deemar KA, Zimmermann JJ: Heparinase in the activated clotting time assay: Monitoring heparin-independent alteration in coagulation function. Anesth Analg 74:201–205, 1992.

827. Oberhardt BJ, Dermott SC, Taylor M, et al: Dry reagent technology for rapid, convenient measurements of blood coagulation and fibrinolysis. Clin Chem 37:520–526, 1991.

828. Mertzlufft F, Koster A, Hansen R, et al: Reliability of the heparin management test for monitoring high levels of unfractionated heparin. In vitro findings in volunteers versus in vivo findings during cardiopulmonary bypass. Anesthesiology 92:1594–1602, 2000.

829. Watke CM, Kern FH, Schulman SR, et al: The heparin management test (HMT): An improved method for monitoring anticoagulation during pediatric cardiac surgery. Anesthesiology 89:A910, 1998.

830. Koster A, Chew D, Grundel M, et al: Bivalrudin monitored with the ecarin clotting time for anticoagulation during cardiopulmonary bypass. Anesth Analg 96:383–386, 2003.

831. Huyzen RJ, van Oeveren W, Wei F, et al: In vitro effect of hemodilution on activated clotting time and high-dose thrombin time during cardiopulmonary bypass. Ann Thorac Surg 62:533–537, 1996.

832. Wang JS, Lin CY, Karp RB: Comparison of high-dose thrombin time with activated clotting time for monitoring of anticoagulant effects of heparin in cardiac surgical patients. Anesth Analg 79:9–13, 1994.

833. Macik GB: Designing a point-of-care program for coagulation testing. Arch Pathol Lab Med 119:929–938, 1995.

834. Despotis GJ, Summerfield AL, Joist JH: Comparison of activated coagulation time and whole blood heparin measurements with laboratory plasma anti-Xa heparin concentration in patients having cardiac operations. J Thorac Cardiovasc Surg 108:1076–1082, 1994.

835. Despotis GJ, Joist HJ, Hogue CW Jr, et al: More effective suppression of hemostatic system activation in patients undergoing cardiac surgery by heparin dosing based on heparin blood concentrations rather than ACT. Thromb Haemost 76:902–908, 1996.

836. Koster A, Fischer T, Praus M, et al: Hemostatic activation and inflammatory response during cardiopulmonary bypass: Impact of heparin management. Anesthesiology 97:837–841, 2002.

837. Despotis GJ, Joist JH, Hogue CW, et al: The impact of heparin concentration and activated clotting time monitoring on blood conservation. J Thorac Cardiovasc Surg 110:46–54, 1995.

838. Wahr JA, Yun J-H, Yang VC, et al: A new method of measuring heparin levels in whole blood by protamine titration using a heparin-responsive electrochemical sensor. J Cardiothorac Vasc Anesth 10:447–450, 1996.

839. Yang VC, Ma SC, Liu D, et al: A novel electrochemical heparin sensor. ASAIO J 39:M195–M201, 1993.

840. Hartert H: Blutgerninnungstudien mit der Thrombelastographic, einen neuen Untersuchungsverfahren. Klin Wochenschr 16:257, 1948.

841. Mallett SV, Cox DJA: Thromboelastography. Br J Anaesth 69:307–313, 1992.

842. Shenaq SA, Saleem A: Viscoelastic measurement of clot formation: The Sonoclot. In Ellison N, Jobes DR (eds): Effective Hemostasis in Cardiac Surgery. Philadelphia, WB Saunders, 1988, pp 183–193.

843. Tuman KJ, Spiess BD, McCarthy RJ, Ivankovich AD: Comparison of viscoelastic measures of coagulation after cardiopulmonary bypass. Anesth Analg 69:69–75, 1989.

844. Saleem A, Blifeld C, Saleh SA, et al: Viscoelastic measurement of clot formation: A new test of platelet function. Ann Clin Lab Sci 13:115–124, 1983.

845. Zuckerman L, Cohen E, Vagher JP, et al: Comparison of thromboelastography with common coagulation tests. Thromb Haemost 46:752–756, 1981.

846. Cammerer U, Dietrich W, Rampf T, et al: The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery. Anesth Analg 96:51–67, 2003.

847. Spiess BD, Tuman KJ, McCarthy RJ, et al: Thromboelastography as an indicator of post-cardiopulmonary bypass coagulopathies. J Clin Monit 3:25–30, 1987.

848. Royston D, von Kier S: Reduced haemostatic factor transfusion using heparinase-modified thromboelastography during cardiopulmonary bypass. Br J Anaesth 86:575–578, 2001.

849. Nicholson NS, Panzer-Knodle SG, Haas NF, et al: Assessment of platelet function assays. Am Heart J 135(5 Pt 2 Suppl):S170–S178, 1998.

850. Despotis GJ, Levine V, Filos KS, et al: Evaluation of a new point-of-care test that measures PAF-mediated acceleration of coagulation in cardiac surgical patients. Anesthesiology 85:1311–1323, 1996.

851. Ereth MH, Nuttall GA, Klindworth JT, et al: Does the platelet-activated clotting test (HemoSTATUS) predict blood loss and platelet dysfunction associated with cardiopulmonary bypass? Anesth Analg 85:259–264, 1997.

852. Ereth MH, Nuttall GA, Santrach PJ, et al: The relation between the platelet-activated clotting test (HemoSTATUS) and blood loss after cardiopulmonary bypass. Anesthesiology 88:962–969, 1998.

853. Coller BS, Lang D, Scudder LE: Rapid and simple platelet function assay to assess GPIIb/IIIa receptor blockade. Circulation 95:860–867, 1997.

854. Despotis GJ, Saleem R, Bigham M, Barnes P: Clinical evaluation of a new, point-of-care hemocytometer. Crit Care Med 28:1185–1190, 2000.

855. Lakkis NM, George S, Thomas E, et al: Use of ICHOR-platelet works to assess platelet function in patients treated with GP IIb/IIIA inhibitors. Cathet Cardiovasc Interv 53:346–351, 2001.

856. Carville DGM, Schleckser PA, Guyer KE, et al: Whole blood platelet function assay on the ICHOR point-of-care hematology analyzer. J Extracorpor Technol 30:171–177, 1998.

857. Kundu SK, Heilmann EJ, Sio R, et al: Description of an in vitro platelet function analyzer—PFA-100. Semin Thromb Hemost 21:106–112, 1995.

858. Fressinaud E, Veyradier A, Truchaud F, et al: Screening for von Willebrand disease with a new analyzer using high shear stress: A study of 60 cases. Blood 91:1325–1331, 1998.

859. Mammen EF, Koets MH, Washington BC, et al: Hemostasis changes during cardiopulmonary bypass surgery. Semin Thromb Hemost 11:281–292, 1985.

860. Slaughter TF, Sreeram G, Sharma AD, et al: Reversible shear-mediated platelet dysfunction during cardiac surgery as assessed by the PFA-100 platelet function analyzer. Blood Coagul Fibrinolysis 12:85–93, 2001.

861. Carr MEJ: Development of platelet contractile force as a research and clinical measure of platelet function. Cell Biochem Biophys 38:55–78, 2003.

862. Greilich PE, Brouse CF, Beckam J, et al: Reductions in platelet contractile force correlate with duration of cardiopulmonary bypass and blood loss in patients undergoing cardiac surgery. Thromb Res 105:523–529, 2002.

Previous Next