Previous Next



REFERENCES

1. Corssen G, Reves JG, Stanley T: Intravenous Anesthesia and Analgesia. Philadelphia, Lea & Febiger, 1988.

2. Schwilden H: A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol 20:379–386, 1981.

3. Reves JG, Sheppard LC, Wallach R, et al: Therapeutic uses of sodium nitroprusside and an automated method of administration. Int Anesthesiol Clin 16:51–88, 1978.

4. Meline LJ, Westenskow DK, Pace NL, et al: Computer-controlled regulation of sodium nitroprusside infusion. Anesth Analg 64:38, 1985.

5. Reid JA, Kenny GN: Evaluation of closed-loop control of arterial pressure after cardiopulmonary bypass. Br J Anaesth 59:247–255, 1987.

6. Colvin JR, Kenny GN: Development and evaluation of a dual-pump microcomputer-based closed-loop arterial pressure control system. Int J Clin Monit Comput 6:31–35, 1989.

7. Grosmaire EK: Computer-controlled sodium nitroprusside infusions in patients after cardiac surgery. Heart Lung 21:214, 1992.

8. de Vries JW, Ros HH, Booij LH: Infusion of vecuronium controlled by a closed-loop system. Br J Anaesth 58:1100–1103, 1986.

9. Olkkola KT, Schwilden H: Quantitation of the interaction between atracurium and succinylcholine using closed-loop feedback control of infusion of atracurium. Anesthesiology 73:614–618, 1990.

10. O'Hara DA, Derbyshire GJ, Overdyk FJ, et al: Closed-loop infusion of atracurium with four different anesthetic techniques. Anesthesiology 74:258–263, 1991.

11. Schwilden H, Olkkola KT: Use of a pharmacokinetic-dynamic model for the automatic feedback control of atracurium. Eur J Clin Pharmacol 40:293–296, 1991.

12. Uys PC, Morrell DF, Bradlow HS, et al: Self-tuning, microprocessor-based closed-loop control of atracurium-induced neuromuscular blockade. Br J Anaesth 61:685–692, 1988.


477


13. Wait CM, Goat VA, Blogg CE: Feedback control of neuromuscular blockade: A simple system for infusion of atracurium. Anaesthesia 42:1212–1217, 1987.

14. Webster NR, Cohen AT: Closed-loop administration of atracurium: Steady-state neuromuscular blockade during surgery using a computer controlled closed-loop atracurium infusion. Anaesthesia 42:1085–1091, 1987.

15. Schwilden H, Schüttler J, Stockel H: Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology 67:341, 1987.

16. Schwilden H, Stoeckel H: Effective therapeutic infusions produced by closed-loop feedback control of methohexital administration during total intravenous anesthesia with fentanyl. Anesthesiology 73:225–229, 1990.

17. Schwilden H, Stoeckel H, Schuttler J: Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans. Br J Anaesth 62:290–296, 1989.

18. Kenny GNC, Davies FW, Mantzardis H, et al: Closed-loop control of anesthesia. Anesthesiology 77:A328, 1992.

19. Struys M, Desmet T, Audenaert S, et al: Development of a closed loop system for propofol using bispectral analysis and a patient-individual pharmacokinetic-dynamic (PK-PD) model: Preliminary results [abstract]. Br J Anaesthesia 78(Suppl 1):23, 1997.

20. Sigl JC, Chamoun NG: An introduction to bispectral analysis for the electroencephalogram. J Clin Monit 10:392–404, 1994.

21. White PF: Use of continuous infusion versus intermittent bolus administration of fentanyl or ketamine during outpatient anesthesia. Anesthesiology 59:294, 1983.

22. Ausems ME, Vuyk J, Hug CC, et al: Comparison of a computer-assisted infusion versus intermittent bolus administration of alfentanil as a supplement to nitrous oxide for lower abdominal surgery. Anesthesiology 68:851–861, 1988.

23. Avram MJ, Krejcie TC: Using front-end kinetics to optimize target-controlled drug infusions. Anesthesiology 99:1078–1086, 2003.

24. Krejcie TC, Avram MJ, Gentry WB, et al: A recirculatory model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis of arterial and mixed venous data from dogs. J Pharmacokinet Biopharm 25:169–190, 1997.

25. Hull CJ, Van Beem HB, McLeod K, et al: A pharmacodynamic model for pancuronium. Br J Anaesth 50:1113–1123, 1978.

26. Sheiner LB, Stanski DR, Vozeh S, et al: Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to D-tubocurarine. Clin Pharmacol Ther 25:358–371, 1979.

27. Glass PS, Hardman D, Kamiyama Y, et al: Preliminary pharmacokinetics and pharmacodynamics of an ultra-short-acting opioid: Remifentanil (GI87084B). Anesth Analg 77:1031–1040, 1993.

28. Egan TD, Lemmens HJM, Fiset P, et al: The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 79:881–892, 1993.

29. Ludbrook GL, Visco E, Lam AM: Propofol: Relation between brain concentrations, electroencephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen extraction during induction of anesthesia. Anesthesiology 97:1363–1370, 2002.

30. Shafer SL, Gregg K: Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer controlled infusion pump. J Pharmacokinet Biopharm 20:147–169, 1992.

31. Jacobs JR, Williams EA: Algorithm to control "effect compartment" drug concentrations in pharmacokinetic model-driven drug delivery. IEEE Trans Biomed Eng 40:993–999, 1993.

32. Bouillon T, Schmidt C, Garstka G, et al: Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of alfentanil. Anesthesiology 91:144–155, 1999.

33. Bouillon T, Bruhn J, Radu-Radulescu L, et al: A model of the ventilatory depressant potency of remifentanil in the non-steady state. Anesthesiology 99:779–787, 2003.

34. Scott JC, Ponganis KV, Stanski DR: EEG quantitation of narcotic effect: The comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 62:234–241, 1985.

35. Eger EID, Saidman LJ, Brandstater B: Minimum alveolar anesthetic concentration: A standard of anesthetic potency. Anesthesiology 26:756–763, 1965.

36. Ausems ME, Stanski DR, Hug CC: An evaluation of the accuracy of pharmacokinetic data for the computer assisted infusion of alfentanil. Br J Anaesth 57:1217–1225, 1985.

37. Hung OR, Varvel JR, Shafer SL, et al: Thiopental pharmacodynamics II. Quantitation of clinical and electroencephalographic depth of anesthesia. Anesthesiology 77:237–244, 1992.

38. Telford RJ, Glass PSA, Goodman D, et al: Fentanyl does not alter the "sleep" plasma concentration of thiopental. Anesth Analg 75:523–529, 1992.

39. Vuyk J, Engbers FHM, Lemmens HJM, et al: Pharmacodynamics of propofol in female patients. Anesthesiology 77:3–9, 1992.

40. Vuyk J, Lim T, Engbers FH, et al: The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women. Anesthesiology 83:8–22, 1995.

41. Smith C, McEwan AI, Jhaveri R, et al: Reduction of propofol Cp50 by fentanyl. Anesthesiology 77:A340, 1992.

42. Jacobs JR, Reves JG, Marty J, et al: Aging increases pharmacodynamic sensitivity to the hypnotic effects of midazolam. Anesth Analg 80:143–148, 1995.

43. Scott JC, Stanski DR: Decreased fentanyl and alfentanil dose requirements with age: A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 240:159–166, 1987.

44. Scott JC, Cooke JE, Stanski DR: Electroencephalographic quantitation of opioid effect: Comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 74:34, 1991.

45. Egan TD, Lemmens HJ, Fiset P, et al: The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 79:881–892, 1993.

46. Egan TD, Minto CF, Hermann DJ, et al: Remifentanil versus alfentanil: Comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 84:821–833, 1996.

47. Minto CF, Schnider TW, Egan TD, et al: The influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology 86:10–23, 1997.

48. Lemmens HJM, Dyck JB, Shafer SL, et al: The application of pharmacokinetics/dynamics and computer simulations to drug development: A3665 versus fentanyl and alfentanil. Anesthesiology 77:A456, 1992.

49. Homer TD, Stanski DR: The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology 62:714–724, 1985.

50. Stanski DR, Maitre PO: Population pharmacokinetics and pharmacodynamics of thiopental: The effect of age revisited. Anesthesiology 72:412–422, 1990.

51. Arden JR, Holley FO, Stanski DR: Increased sensitivity to etomidate in the elderly: Initial distribution versus altered brain response. Anesthesiology 65:19, 1986.

52. Billard V, Gambus PL, Chamoun N, et al: A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther 61:45–58, 1997.

53. Schnider TW, Minto CF, Fiset P, et al: Semilinear canonical correlation applied to the measurement of the electroencephalographic effects of midazolam and flumazenil reversal. Anesthesiology 84:510–519, 1996.

54. Egan TD, Muir KT, Hermann DJ, et al: The electroencephalogram (EEG) and clinical measure of opioid potency: Defining the EEG-clinical potency relationship ("fingerprint") with application to remifentanil. Int J Pharm Med 15:1–9, 2001.

55. Ausems ME, Hug CC Jr, Stanski DR, et al: Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology 65:362–373, 1986.
478


56. Glass PSA, Doherty M, Jacobs JR, et al: Plasma concentration of fentanyl, with 70% nitrous oxide, to prevent movement at skin incision. Anesthesiology 78:842–847, 1993.

57. Gourlay GK, Kowalski SR, Plummer JL, et al: Fentanyl blood concentration-analgesic response relationship in the treatment of postoperative pain. Anesth Analg 67:329–337, 1988.

58. Van den Nieuwenhuyzen MCO, Engbers FHM, Burm AGL, et al: Computer-controlled infusion of alfentanil versus PCA-morphine for postoperative analgesia: A double-blind study. Anesth Analg 40:1112–1118, 1995.

59. Lehmann KA: Patient-controlled analgesia for postoperative pain. Adv Pain Res Ther 14:297, 1990.

60. Lehmann KA, Gerhard A, Horrichs-Haermeyer G, et al: Postoperative patient-controlled analgesia with sufentanil: Analgesic efficacy and minimum effective concentrations. Acta Anaesthesiol Scand 35:221, 1991.

61. Kissin I, Mason JOD, Bradley EL Jr: Morphine and fentanyl interactions with thiopental in relation to movement response to noxious stimulation. Anesth Analg 65:1149–1154, 1986.

62. Kissin I, Mason JO, Bradley EL: Morphine and fentanyl hypnotic interactions with thiopental. Anesthesiology 67:331–335, 1987.

63. Mehta D, Bradley EL Jr, Kissin I: Effect of alfentanil on hypnotic and antinociceptive components of thiopental sodium anesthesia. J Clin Anesth 3:280–284, 1991.

64. Kissin I, Brown PT, Bradley EL Jr: Sedative and hypnotic midazolam-morphine interactions in rats. Anesth Analg 71:137–143, 1990.

65. Ropcke H, Schwilden H: The interaction of nitrous oxide and enflurane on the EEG median of 2–3 Hz is additive, but weaker than at 1.0 MAC [in German]. Anaesthesist 45:819–825, 1996.

66. Gonsowski CT, Eger EI 2nd: Nitrous oxide minimum alveolar anesthetic concentration in rats is greater than previously reported. Anesth Analg 79:710–712, 1994.

67. Deady JE, Koblin DD, Eger EI 2nd, et al: Anesthetic potencies and the unitary theory of narcosis. Anesth Analg 60:380–384, 1981.

68. Targ AG, Yasuda N, Eger EI 2nd, et al: Halogenation and anesthetic potency. Anesth Analg 68:599–602, 1989; see comments.

69. Kissin I: General anesthetic action: An obsolete notion? Anesth Analg 76:215–218, 1993.

70. Katoh T, Ikeda I: The effects of fentanyl on sevoflurane requirements for loss of consciousness and skin incision. Anesthesiology 88:18–24, 1998.

71. McEwan AI, Smith C, Dyar O, et al: Isoflurane MAC reduction by fentanyl. Anesthesiology 78:864–869, 1993.

72. Brunner MD, Braithwaite P, Jhaveri R, et al: The MAC reduction of isoflurane by sufentanil. Br J Anaesth 72:42–46, 1994.

73. Westmoreland C, Sebel PS, Groper A, et al: Reduction of isoflurane MAC by fentanyl or alfentanil. Anesthesiology 77:A394, 1992.

74. Lang E, Kapila A, Shlugman D, et al: Reduction of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology 85:721–728, 1996.

75. Glass PSA, Jacobs JR, Smith RL, et al: Pharmacokinetic model-driven infusion of fentanyl: Assessment of accuracy. Anesthesiology 73:1082–1090, 1990.

76. Dwyer R, Bennett HL, Eger EI 2nd, et al: Isoflurane anesthesia prevents unconscious learning. Anesth Analg 75:107–112, 1992.

77. Minto CF, Schnider TW, Short TG, et al: Response surface model for anesthetic drug interactions. Anesthesiology 92:1603–1616, 2000.

78. Shafer SL, Varvel JR: Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology 74:53–63, 1991.

79. Henthorn TK, Krejcie TC, Shanks CA, et al: Time-dependent distribution volume and kinetics of the pharmacodynamic effector site. J Pharm Sci 81:1136, 1992.

80. Wagner JG: A safe method for rapidly achieving plasma concentration plateaus. Clin Pharmacol Ther 16:691–700, 1974.

81. Bruhn J, Bouillon TW, Ropcke H, Hoeft A: A manual slide rule for target-controlled infusion of propofol: Development and evaluation. Anesth Analg 96:142–147, 2003.

82. Hughes MA, Glass PSA, Jacobs JR: Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 76:334–341, 1992.

83. Schwilden H: Optimization of the dosage of volatile anesthetics based on pharmacokinetic and dynamic models. Anasthesiol Intensivmed Notfallmed Schmerzther 20:307–315, 1985.

84. Fisher DM, Rosen JI: A pharmacokinetic explanation for increasing recovery time following larger or repeated doses of nondepolarizing muscle relaxants. Anesthesiology 65:286–291, 1986.

85. Youngs EJ, Shafer SL: Pharmacokinetic parameters relevant to recovery from opioids. Anesthesiology 81:833–842, 1994.

86. Bailey JM: Technique for quantifying the duration of intravenous anesthetic effect. Anesthesiology 83:1095–1103, 1995; see comments.

87. Vuyk J, Mertens MJ, Olofsen E, et al: Propofol anesthesia and rational opioid selection: Determination of optimal EC50-EC95 propofol-opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology 87:1549–1562, 1997.

88. Heykants J, Geerts P, Noorduin H, et al: The pharmacokinetic basis of alfentanil infusion. Eur J Anaesthesiol 1:17, 1987.

89. Moldenhauer CC, Hug CC Jr: Use of narcotic analgesics as anaesthetics. Clin Anaesth 2:107, 1984.

90. Sebel PS, Bovill JG: Opioid analgesics in cardiac anesthesia. In Kaplan JA (ed): Cardiac Anesthesia. Orlando, FL, Grune & Stratton, 1987, p 67.

91. Minto CF, Schnider TW, Shafer SL: Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology 86:24–33, 1997.

92. White P: Propofol: Pharmacokinetics and pharmacodynamics. Semin Anesth 7:4, 1988.

93. Shafer A, Doze VA, Shafer SL, et al: Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 69:348–356, 1988.

94. Barr J, Egan TD, Sandoval NF, et al: Propofol dosing regimens for ICU sedation based upon an integrated pharmacokinetic-pharmacodynamic model. Anesthesiology. 95:324–333, 2001.

95. White PF, Dworsky WA, Horai V, et al: Comparison of continuous infusion fentanyl or ketamine versus thiopental—determining the mean effective serum concentrations for outpatient surgery. Anesthesiology 59:564, 1983.

96. Glass PS, Leiman BC, Reves JG: Etomidate: What is its present role in anesthesia? Semin Anesth 7:143, 1988.

97. White PF, Way WL, Trevor AJ: Ketamine: Its pharmacology and therapeutic uses. Anesthesiology 56:119, 1982.

98. Reves J, Glass PSA, Jacobs J: Midazolam and alfentanil: New anesthetic drugs for continuous infusion and an automated method of administration. Mt Sinai J Med 56:99, 1989.

99. Kissin I, Brown PT, Bradley EL, et al: Diazepam-morphine hypnotic synergism in rats. Anesthesiology 70:689–694, 1989.

100. Theil DR, Stanley TE III, White WD, et al: Midazolam and fentanyl continuous infusion anesthesia for cardiac surgery: A comparison of computer-assisted vs. manual infusion systems. J Cardiothorac Vasc Anesth 7:300–306, 1993.

101. Crankshaw DP, Morgan DJ, Beemer GH, et al: Preprogrammed infusion of alfentanil to constant arterial plasma concentration. Anesth Analg 76:556, 1993.

102. Shafer SL: Constant versus optimal plasma concentrations. Anesth Analg 76:467–469, 1993.

103. Reves JG, Jacobs JR, Glass PSA: Automated drug delivery in anesthesia. ASA Refresher Course in Anesthesiology 19, 1991, p 19.

104. Kruger-Thiemer E: Continuous intravenous infusion and multicompartment accumulation. Eur J Pharmacol 4:317–324, 1968.

105. Schwilden H, Schuttler J, Stoekel H: Pharmacokinetics as applied to total intravenous anaesthesia: Theoretical considerations. Anaesthesia 38(Suppl):51–52, 1983.
479


106. Schüttler J, Schwilden H, Stoekel H: Pharmacokinetics as applied to total intravenous anaesthesia: Practical implications. Anaesthesia 38(Suppl):53–56, 1983.

107. Bazaral MG, Ciarkowski A: Food and drug administration regulations and computer-controlled infusion pumps. Int Anesthesiol Clin 33:45–63, 1995

108. Shafer SL, Siegel LC, Cooke JE, et al: Testing computer-controlled infusion pumps by simulation. Anesthesiology 68:261–266, 1988.

109. Varvel JR, Donoho DL, Shafer SL: Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm 20:63, 1992.

110. Raemer DB, Buschman A, Varvel JR, et al: The prospective use of population pharmacokinetics in a computer-driven infusion system for alfentanil. Anesthesiology 73:66–72, 1990.

111. Schüttler J, Kloos S, Schwilden H, et al: Total intravenous anaesthesia with propofol and alfentanil by computer-assisted infusion. Anaesthesia 43(Suppl):2–7, 1988.

112. Lemmens HJM, Bovill JG, Burm AGL, et al: Alfentanil infusion in the elderly. Anaesthesia 43:850–856, 1988.

113. Veselis RA, Glass P, Dnistrian A, et al: Performance of computer-assisted continuous infusion at low concentrations of intravenous sedatives. Anesth Analg 84:1049–1057, 1997.

114. Shafer SL, Varvel SL, Aziz N, et al: The pharmacokinetics of fentanyl administered by computer controlled infusion pump. Anesthesiology 73:1091–1102, 1990.

115. Alvis JM, Reves JG, Govier AV, et al: Computer assisted continuous infusions of fentanyl during cardiac anesthesia: Comparison with a manual method. Anesthesiology 63:41–49, 1985.

116. Coetzee JF, Glen JB, Wium CA, et al: Pharmacokinetic model selection for target controlled infusions of propofol: Assessment of three parameter sets. Anesthesiology 82:1328–1345, 1995.

117. Marsh B, White M, Morton N, et al: Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67:41, 1991.

118. Schüttler J, Stoeckel H: Alfentanil (R39209) ein neues kurzwirkendes opioid. Pharmakokinetik und erste klinische erfahrungen. Anaesthesist 31:10, 1982.

119. Maitre PO, Vozeh S, Heykants J: Population pharmacokinetics of alfentanil: The average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology 66:3–12, 1987.

120. Crankshaw DP, Boyd MD, Bjorksten AR: Plasma drug efflux: A new approach to optimization of drug infusion for constant blood concentration of thiopental and methohexital. Anesthesiology 67:32–41, 1987.

121. Helmers H, Van Peer A, Woestenborghs R, et al: Alfentanil kinetics in the elderly. Clin Pharmacol Ther 36:239–243, 1984.

122. McClain DA, Hug CC Jr: Intravenous fentanyl kinetics. Clin Pharmacol Ther 28:106, 1980.

123. Glass PSA, Jacobs J, Alvis M, et al: Computer assisted continuous infusion of alfentanil during noncardiac anesthesia: A comparison with a manual method. Anesthesiology 65:A546, 1986.

124. Greeley WJ, de Bruijn NP, Davis DP: Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg 66:1067–1072, 1987.

125. Kern FH, Ungerleider RM, Jacobs JR, et al: Computerized continuous infusion of intravenous anesthetic drugs during pediatric cardiac surgery. Anesth Analg 72:487–492, 1991.

126. Mertens MJ, Engbers FH, Burm AG, Vuyk J: Predictive performance of computer-controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth 90:132–141, 2003.

127. Ghoneim MM, Van Hamme MJ: Pharmacokinetics of thiopentone: Effects of enflurane and nitrous oxide anaesthesia and surgery. Br J Anaesth 50:1237–1242, 1978.

128. Smith MT, Eadie MJ, Brophy TO: The pharmacokinetics of midazolam in man. Eur J Clin Pharmacol 19:271–278, 1981.

129. Greenblatt DJ, Abernathy DR, Locniskar A, et al: Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61:27–35, 1984.

130. Dyck JB, Varvel J, Hung O, et al: The pharmacokinetics of propofol versus age [abstract]. Can Anaesth J 38(Suppl): A129, 1991.

131. Tackley RM, Lewis GTR, Prys-Roberts C, et al: Computer controlled infusion of propofol. Br J Anesth 62:46, 1989.

132. Gepts E, Camu F, Cockshott ID, et al: Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 66:1256–1263, 1987.

133. Glass PSA, Goodman DK, Ginsberg B, et al: Accuracy of pharmacokinetic model-driven infusion of propofol. Anesthesiology 71:A277, 1989.

134. Ginsberg B, Howell S, Glass PSA, et al: Pharmacokinetic model-driven infusion of fentanyl in children. Anesthesiology 85:1268–1275, 1996.

135. Fiset P, Mathers L, Engstrom R, et al: Pharmacokinetics of computer controlled alfentanil administration in children undergoing cardiac surgery. Anesthesiology 83:944–955, 1995.

136. Bailey JM, Mora CT, Shafer SL, et al: Pharmacokinetics of propofol in adult patients undergoing coronary revascularization. Anesthesiology 81:1288–1297, 1996.

137. Vuyk J, Oostwouder CJ, Vletter AA, et al: Gender differences in the pharmacokinetics of propofol in elderly patients during and after continuous infusion. Br J Anaesth 86:183–188, 2001.

138. Schuttler J, Ihmsen H: Population pharmacokinetics of propofol: A multicenter study. Anesthesiology 92:727–738, 2000.

139. Kazama T, Kurita T, Morita K, et al: Influence of hemorrhage on propofol pseudo-steady state concentration. Anesthesiology 97:1156–1161, 2002.

140. Egan TD, Kuramkote S, Gong G, et al: Fentanyl pharmacokinetics in hemorrhagic shock: A porcine model. Anesthesiology 91:156–166, 1999.

141. Johnson KB, Kern SE, Hamber EA, et al: Influence of hemorrhagic shock on remifentanil: A pharmacokinetic and pharmacodynamic analysis. Anesthesiology 94:322–332, 2001.

142. Pavlin DJ, Coda B, Shen DD, et al: Effects of combining propofol and alfentanil on ventilation, analgesia, sedation, and emesis in human volunteers. Anesthesiology 84:23–37, 1996.

143. Kharasch ED, Russell M, Mautz D, et al: The role of cytochrome P450 3A4 in alfentanil clearance. Anesthesiology 87:36–50, 1997.

144. Vuyk J, Mertens MJ, Vletter AA, et al: Alfentanil modifies the pharmacokinetics of propofol in volunteers. Anesthesiology 87:A300, 1997.

145. Bouillon T, Bruhn J, Radu-Radulescu L, et al: Non-steady state analysis of the pharmacokinetic interaction between propofol and remifentanil. Anesthesiology 97:1350–1362, 2002.

146. Knibbe CA, Zuideveld KP, DeJongh J, et al: Population pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in critically ill patients: A comparison between propofol 6% and propofol 1%. Clin Pharmacol Ther 72:670–684, 2002.

147. Hill HF, Saeger L, Bjurstrom R, et al: Steady-state infusions of opioids in human volunteers. I. Pharmacokinetic tailoring. Pain 43:57, 1990.

148. Maitre PE, Stanski DR: Bayesian forecasting improves the prediction of intraoperative plasma concentrations of alfentanil. Anesthesiology 69:652–659, 1988.

149. Wakeling HG, Zimmerman JB, Howell S, Glass PS: Targeting effect compartment or central compartment concentration of propofol: What predicts loss of consciousness? Anesthesiology 90:92–97, 1999.

150. Struys MM, De Smet T, Depoorter B, et al: Comparison of plasma compartment versus two methods for effect compartment-controlled target-controlled infusion for propofol. Anesthesiology 92:399–406, 2000.

151. Kazama T, Ikeda K, Morita K, et al: Comparison of the effect-site Ke0 s of propofol for blood pressure and EEG bispectral index in elderly and younger patients. Anesthesiology 90:1517–1527, 1999.
480


152. Minto CF, Schnider TW, Gregg KM, et al: Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology 99:324–333, 2003.

153. Struys M, Versichelen L, Thas O, et al: Comparison of computer-controlled propofol administration with two manual infusion methods [abstract]. Br J Anaesth 76(Suppl 2):87, 1996.

154. Russel D, Wilkes MP, Hunter SC, et al: Manual compared with target-controlled infusion of propofol. Br J Anaesth 75:562–566, 1995.

155. Servin FS: TCI compared with manually controlled infusion of propofol: A multicentre study. Anaesthesia 53(Suppl 1):82–86, 1998.

156. Gale T, Leslie K, Kluger M: Propofol anaesthesia via target controlled infusion or manually controlled infusion: Effects on the bispectral index as a measure of anaesthetic depth. Anaesth Intensive Care 29:579–584, 2001.

157. De Castro V, Godet G, Mencia G, et al: Target-controlled infusion for remifentanil in vascular patients improves hemodynamics and decreases remifentanil requirement. Anesth Analg 96:33–38, 2003.

158. Passot S, Servin F, Allary R, et al: Target-controlled versus manually-controlled infusion of propofol for direct laryngoscopy and bronchoscopy. Anesth Analg 94:1212–1216, 2002.

159. Glass PSA, Ginsberg B, Hawkins ED, et al: Comparison of sodium thiopental/isoflurane to propofol (delivered by means of a pharmacokinetic model-driven device) for the induction, maintenance, and recovery from anesthesia. Anesthesiology 69:A575, 1988.

160. Godet G, Watremez C, El Kettani C, et al: A comparison of sevoflurane, target-controlled infusion propofol, and propofol/isoflurane anesthesia in patients undergoing carotid surgery: A quality of anesthesia and recovery profile. Anesth Analg 93:560–565, 2001.

161. Suttner S, Boldt J, Schmidt C, et al: Cost analysis of target-controlled infusion-based anesthesia compared with standard anesthesia regimens. Anesth Analg 88:77–82, 1999.

162. Hill HF, Chapman CR, Saeger LS, et al: Steady-state infusions of opioids in human. II. Concentration-effect relationships and therapeutic margins. Pain 43:69–79, 1990.

163. Hill HF, Mather LE: Patient-controlled analgesia: Pharmacokinetic and therapeutic considerations. Clin Pharmacokinet 24:124–140, 1993.

164. Hill H, Mackie A, Coda B, et al: Evaluation of the accuracy of a pharmacokinetically-based patient-controlled analgesia system. Eur J Clin Pharmacol 43:67–75, 1992.

165. Hill HF, Jacobson RC, Coda BA, et al: A computer-based system for controlling plasma opioid concentration according to patient need for analgesia. Clin Pharmacokinet 20:319–330, 1991.

166. Hill HF, Mackie AM, Coda BA, et al: Patient-controlled analgesic administration: A comparison of steady-state morphine infusions with bolus doses. Cancer 67:873–882, 1991.

167. Schnider TW, Gaeta R, Brose W, et al: Derivation and cross-validation of pharmacokinetic parameters for computer-controlled infusion of lidocaine in pain therapy. Anesthesiology 84:1043–1050, 1996.

168. Absalom AR, Sutcliffe N, Kenny GN: Closed-loop control of anesthesia using Bispectral index: Performance assessment in patients undergoing major orthopedic surgery under combined general and regional anesthesia. Anesthesiology 96:67–73, 2002.

169. O'Hara DA, Bogen DK, Noordergraaf A: The use of computers for controlling the delivery of anesthesia. Anesthesiology 77:563–581, 1992.

170. Westenskow DR, Meline L, Pace NL: Controlled hypotension with sodium nitroprusside: Anesthesiologist versus computer. J Clin Monit 3:80–86, 1987.

171. Olkkola KT, Schwilden H: Quantitation of the interaction between atracurium and succinylcholine using closed-loop feedback control of infusion of atracurium. Anesthesiology 73:614–618, 1990.

172. Struys M, Versichelen L, Byttebier G, et al: Clinical usefulness of the bispectral index for titrating propofol target effect-site concentration. Anesthesia 53:4–12, 1998.

173. Morley AP, Derrick J, Seed PT, et al: Isoflurane dosage for equivalent intraoperative electroencephalographic suppression in patients with and without epidural blockade. Anesth Analg 95:1412–1418, 2002.

174. Gentilini A, Rossoni-Gerosa M, Frei CW, et al: Modeling and closed-loop control of hypnosis by means of bispectral index (BIS) with isoflurane. IEEE Trans Biomed Eng 48:874–889, 2001.

175. Kansanaho M, Olkkola KT: The effect of halothane on mivacurium infusion requirements in adult surgical patients. Acta Anaesthesiol Scand 41:754–759, 1997.

176. Struys MM, De Smet T, Versichelen LF, et al: Comparison of closed-loop controlled administration of propofol using Bispectral Index as the controlled variable versus "standard practice" controlled administration. Anesthesiology 95:6–17, 2001.

177. Kenny GN, Mantzaridis H: Closed-loop control of propofol anaesthesia. Br J Anaesth 83:223–228, 1999.

178. Sakai T, Matsuki A, White PF, Giesecke AH: Use of an EEG-bispectral closed-loop delivery system for administering propofol. Acta Anaesthesiol Scand 44:1007–1010, 2000.

179. Morley A, Derrick J, Mainland P, et al: Closed loop control of anaesthesia: An assessment of the bispectral index as the target of control. Anaesthesia 55:953–959, 2000.

180. Glass PS, Rampil IJ: Automated anesthesia: Fact or fantasy? Anesthesiology 95:1–2, 2001.

181. Kansanaho M, Olkkola KT, Wierda JM: Dose-response and concentration-response relation of rocuronium infusion during propofol-nitrous oxide and isoflurane-nitrous oxide anaesthesia. Eur J Anaesthesiol 14:488–494, 1997.

182. Meretoja OA, Wirtavuori K, Taivainen T, Olkkola KT: Time course of potentiation of mivacurium by halothane and isoflurane in children. Br J Anaesth 76:235–238, 1996.

183. Milne SE, Kenny GN, Schraag S: Propofol sparing effect of remifentanil using closed-loop anaesthesia. Br J Anaesth 90:623–629, 2003.

184. Schwilden H, Schuttler J: The determination of an effective therapeutic infusion rate for intravenous anesthetics using feedback-controlled dosages [in German]. Anaesthesist 39:603–606, 1990.

185. Albrecht S, Frenkel C, Ihmsen H, Schuttler J: A rational approach to the control of sedation in intensive care unit patients based on closed-loop control. Eur J Anaesthesiol 16:678–687, 1999.

Previous Next