|
|
REFERENCES
1.
Corssen G, Reves JG, Stanley T: Intravenous Anesthesia
and Analgesia. Philadelphia, Lea & Febiger, 1988.
2.
Schwilden H: A general method for calculating the
dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol 20:379–386,
1981.
3.
Reves JG, Sheppard LC, Wallach R, et al: Therapeutic
uses of sodium nitroprusside and an automated method of administration. Int Anesthesiol
Clin 16:51–88, 1978.
4.
Meline LJ, Westenskow DK, Pace NL, et al: Computer-controlled
regulation of sodium nitroprusside infusion. Anesth Analg 64:38, 1985.
5.
Reid JA, Kenny GN: Evaluation of closed-loop control
of arterial pressure after cardiopulmonary bypass. Br J Anaesth 59:247–255,
1987.
6.
Colvin JR, Kenny GN: Development and evaluation
of a dual-pump microcomputer-based closed-loop arterial pressure control system.
Int J Clin Monit Comput 6:31–35, 1989.
7.
Grosmaire EK: Computer-controlled sodium nitroprusside
infusions in patients after cardiac surgery. Heart Lung 21:214, 1992.
8.
de Vries JW, Ros HH, Booij LH: Infusion of vecuronium
controlled by a closed-loop system. Br J Anaesth 58:1100–1103, 1986.
9.
Olkkola KT, Schwilden H: Quantitation of the interaction
between atracurium and succinylcholine using closed-loop feedback control of infusion
of atracurium. Anesthesiology 73:614–618, 1990.
10.
O'Hara DA, Derbyshire GJ, Overdyk FJ, et al: Closed-loop
infusion of atracurium with four different anesthetic techniques. Anesthesiology
74:258–263, 1991.
11.
Schwilden H, Olkkola KT: Use of a pharmacokinetic-dynamic
model for the automatic feedback control of atracurium. Eur J Clin Pharmacol 40:293–296,
1991.
12.
Uys PC, Morrell DF, Bradlow HS, et al: Self-tuning,
microprocessor-based closed-loop control of atracurium-induced neuromuscular blockade.
Br J Anaesth 61:685–692, 1988.
13.
Wait CM, Goat VA, Blogg CE: Feedback control of
neuromuscular blockade: A simple system for infusion of atracurium. Anaesthesia
42:1212–1217, 1987.
14.
Webster NR, Cohen AT: Closed-loop administration
of atracurium: Steady-state neuromuscular blockade during surgery using a computer
controlled closed-loop atracurium infusion. Anaesthesia 42:1085–1091, 1987.
15.
Schwilden H, Schüttler J, Stockel H: Closed-loop
feedback control of methohexital anesthesia by quantitative EEG analysis in humans.
Anesthesiology 67:341, 1987.
16.
Schwilden H, Stoeckel H: Effective therapeutic
infusions produced by closed-loop feedback control of methohexital administration
during total intravenous anesthesia with fentanyl. Anesthesiology 73:225–229,
1990.
17.
Schwilden H, Stoeckel H, Schuttler J: Closed-loop
feedback control of propofol anaesthesia by quantitative EEG analysis in humans.
Br J Anaesth 62:290–296, 1989.
18.
Kenny GNC, Davies FW, Mantzardis H, et al: Closed-loop
control of anesthesia. Anesthesiology 77:A328, 1992.
19.
Struys M, Desmet T, Audenaert S, et al: Development
of a closed loop system for propofol using bispectral analysis and a patient-individual
pharmacokinetic-dynamic (PK-PD) model: Preliminary results [abstract]. Br J Anaesthesia
78(Suppl 1):23, 1997.
20.
Sigl JC, Chamoun NG: An introduction to bispectral
analysis for the electroencephalogram. J Clin Monit 10:392–404, 1994.
21.
White PF: Use of continuous infusion versus intermittent
bolus administration of fentanyl or ketamine during outpatient anesthesia. Anesthesiology
59:294, 1983.
22.
Ausems ME, Vuyk J, Hug CC, et al: Comparison of
a computer-assisted infusion versus intermittent bolus administration of alfentanil
as a supplement to nitrous oxide for lower abdominal surgery. Anesthesiology 68:851–861,
1988.
23.
Avram MJ, Krejcie TC: Using front-end kinetics
to optimize target-controlled drug infusions. Anesthesiology 99:1078–1086,
2003.
24.
Krejcie TC, Avram MJ, Gentry WB, et al: A recirculatory
model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis
of arterial and mixed venous data from dogs. J Pharmacokinet Biopharm 25:169–190,
1997.
25.
Hull CJ, Van Beem HB, McLeod K, et al: A pharmacodynamic
model for pancuronium. Br J Anaesth 50:1113–1123, 1978.
26.
Sheiner LB, Stanski DR, Vozeh S, et al: Simultaneous
modeling of pharmacokinetics and pharmacodynamics: Application to D-tubocurarine.
Clin Pharmacol Ther 25:358–371, 1979.
27.
Glass PS, Hardman D, Kamiyama Y, et al: Preliminary
pharmacokinetics and pharmacodynamics of an ultra-short-acting opioid: Remifentanil
(GI87084B). Anesth Analg 77:1031–1040, 1993.
28.
Egan TD, Lemmens HJM, Fiset P, et al: The pharmacokinetics
of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers.
Anesthesiology 79:881–892, 1993.
29.
Ludbrook GL, Visco E, Lam AM: Propofol: Relation
between brain concentrations, electroencephalogram, middle cerebral artery blood
flow velocity, and cerebral oxygen extraction during induction of anesthesia. Anesthesiology
97:1363–1370, 2002.
30.
Shafer SL, Gregg K: Algorithms to rapidly achieve
and maintain stable drug concentrations at the site of drug effect with a computer
controlled infusion pump. J Pharmacokinet Biopharm 20:147–169, 1992.
31.
Jacobs JR, Williams EA: Algorithm to control "effect
compartment" drug concentrations in pharmacokinetic model-driven drug delivery.
IEEE Trans Biomed Eng 40:993–999, 1993.
32.
Bouillon T, Schmidt C, Garstka G, et al: Pharmacokinetic-pharmacodynamic
modeling of the respiratory depressant effect of alfentanil. Anesthesiology 91:144–155,
1999.
33.
Bouillon T, Bruhn J, Radu-Radulescu L, et al:
A model of the ventilatory depressant potency of remifentanil in the non-steady state.
Anesthesiology 99:779–787, 2003.
34.
Scott JC, Ponganis KV, Stanski DR: EEG quantitation
of narcotic effect: The comparative pharmacodynamics of fentanyl and alfentanil.
Anesthesiology 62:234–241, 1985.
35.
Eger EID, Saidman LJ, Brandstater B: Minimum alveolar
anesthetic concentration: A standard of anesthetic potency. Anesthesiology 26:756–763,
1965.
36.
Ausems ME, Stanski DR, Hug CC: An evaluation of
the accuracy of pharmacokinetic data for the computer assisted infusion of alfentanil.
Br J Anaesth 57:1217–1225, 1985.
37.
Hung OR, Varvel JR, Shafer SL, et al: Thiopental
pharmacodynamics II. Quantitation of clinical and electroencephalographic depth of
anesthesia. Anesthesiology 77:237–244, 1992.
38.
Telford RJ, Glass PSA, Goodman D, et al: Fentanyl
does not alter the "sleep" plasma concentration of thiopental. Anesth Analg 75:523–529,
1992.
39.
Vuyk J, Engbers FHM, Lemmens HJM, et al: Pharmacodynamics
of propofol in female patients. Anesthesiology 77:3–9, 1992.
40.
Vuyk J, Lim T, Engbers FH, et al: The pharmacodynamic
interaction of propofol and alfentanil during lower abdominal surgery in women.
Anesthesiology 83:8–22, 1995.
41.
Smith C, McEwan AI, Jhaveri R, et al: Reduction
of propofol Cp50 by fentanyl. Anesthesiology 77:A340, 1992.
42.
Jacobs JR, Reves JG, Marty J, et al: Aging increases
pharmacodynamic sensitivity to the hypnotic effects of midazolam. Anesth Analg 80:143–148,
1995.
43.
Scott JC, Stanski DR: Decreased fentanyl and alfentanil
dose requirements with age: A simultaneous pharmacokinetic and pharmacodynamic evaluation.
J Pharmacol Exp Ther 240:159–166, 1987.
44.
Scott JC, Cooke JE, Stanski DR: Electroencephalographic
quantitation of opioid effect: Comparative pharmacodynamics of fentanyl and sufentanil.
Anesthesiology 74:34, 1991.
45.
Egan TD, Lemmens HJ, Fiset P, et al: The pharmacokinetics
of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers.
Anesthesiology 79:881–892, 1993.
46.
Egan TD, Minto CF, Hermann DJ, et al: Remifentanil
versus alfentanil: Comparative pharmacokinetics and pharmacodynamics in healthy
adult male volunteers. Anesthesiology 84:821–833, 1996.
47.
Minto CF, Schnider TW, Egan TD, et al: The influence
of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil.
I. Model development. Anesthesiology 86:10–23, 1997.
48.
Lemmens HJM, Dyck JB, Shafer SL, et al: The application
of pharmacokinetics/dynamics and computer simulations to drug development: A3665
versus fentanyl and alfentanil. Anesthesiology 77:A456, 1992.
49.
Homer TD, Stanski DR: The effect of increasing
age on thiopental disposition and anesthetic requirement. Anesthesiology 62:714–724,
1985.
50.
Stanski DR, Maitre PO: Population pharmacokinetics
and pharmacodynamics of thiopental: The effect of age revisited. Anesthesiology
72:412–422, 1990.
51.
Arden JR, Holley FO, Stanski DR: Increased sensitivity
to etomidate in the elderly: Initial distribution versus altered brain response.
Anesthesiology 65:19, 1986.
52.
Billard V, Gambus PL, Chamoun N, et al: A comparison
of spectral edge, delta power, and bispectral index as EEG measures of alfentanil,
propofol, and midazolam drug effect. Clin Pharmacol Ther 61:45–58, 1997.
53.
Schnider TW, Minto CF, Fiset P, et al: Semilinear
canonical correlation applied to the measurement of the electroencephalographic effects
of midazolam and flumazenil reversal. Anesthesiology 84:510–519, 1996.
54.
Egan TD, Muir KT, Hermann DJ, et al: The electroencephalogram
(EEG) and clinical measure of opioid potency: Defining the EEG-clinical potency
relationship ("fingerprint") with application to remifentanil. Int J Pharm Med 15:1–9,
2001.
55.
Ausems ME, Hug CC Jr, Stanski DR, et al: Plasma
concentrations of alfentanil required to supplement nitrous oxide anesthesia for
general surgery. Anesthesiology 65:362–373, 1986.
56.
Glass PSA, Doherty M, Jacobs JR, et al: Plasma
concentration of fentanyl, with 70% nitrous oxide, to prevent movement at skin incision.
Anesthesiology 78:842–847, 1993.
57.
Gourlay GK, Kowalski SR, Plummer JL, et al: Fentanyl
blood concentration-analgesic response relationship in the treatment of postoperative
pain. Anesth Analg 67:329–337, 1988.
58.
Van den Nieuwenhuyzen MCO, Engbers FHM, Burm AGL,
et al: Computer-controlled infusion of alfentanil versus PCA-morphine for postoperative
analgesia: A double-blind study. Anesth Analg 40:1112–1118, 1995.
59.
Lehmann KA: Patient-controlled analgesia for postoperative
pain. Adv Pain Res Ther 14:297, 1990.
60.
Lehmann KA, Gerhard A, Horrichs-Haermeyer G, et
al: Postoperative patient-controlled analgesia with sufentanil: Analgesic efficacy
and minimum effective concentrations. Acta Anaesthesiol Scand 35:221, 1991.
61.
Kissin I, Mason JOD, Bradley EL Jr: Morphine and
fentanyl interactions with thiopental in relation to movement response to noxious
stimulation. Anesth Analg 65:1149–1154, 1986.
62.
Kissin I, Mason JO, Bradley EL: Morphine and fentanyl
hypnotic interactions with thiopental. Anesthesiology 67:331–335, 1987.
63.
Mehta D, Bradley EL Jr, Kissin I: Effect of alfentanil
on hypnotic and antinociceptive components of thiopental sodium anesthesia. J Clin
Anesth 3:280–284, 1991.
64.
Kissin I, Brown PT, Bradley EL Jr: Sedative and
hypnotic midazolam-morphine interactions in rats. Anesth Analg 71:137–143,
1990.
65.
Ropcke H, Schwilden H: The interaction of nitrous
oxide and enflurane on the EEG median of 2–3 Hz is additive, but weaker than
at 1.0 MAC [in German]. Anaesthesist 45:819–825, 1996.
66.
Gonsowski CT, Eger EI 2nd: Nitrous oxide minimum
alveolar anesthetic concentration in rats is greater than previously reported. Anesth
Analg 79:710–712, 1994.
67.
Deady JE, Koblin DD, Eger EI 2nd, et al: Anesthetic
potencies and the unitary theory of narcosis. Anesth Analg 60:380–384, 1981.
68.
Targ AG, Yasuda N, Eger EI 2nd, et al: Halogenation
and anesthetic potency. Anesth Analg 68:599–602, 1989; see comments.
69.
Kissin I: General anesthetic action: An obsolete
notion? Anesth Analg 76:215–218, 1993.
70.
Katoh T, Ikeda I: The effects of fentanyl on sevoflurane
requirements for loss of consciousness and skin incision. Anesthesiology 88:18–24,
1998.
71.
McEwan AI, Smith C, Dyar O, et al: Isoflurane
MAC reduction by fentanyl. Anesthesiology 78:864–869, 1993.
72.
Brunner MD, Braithwaite P, Jhaveri R, et al: The
MAC reduction of isoflurane by sufentanil. Br J Anaesth 72:42–46, 1994.
73.
Westmoreland C, Sebel PS, Groper A, et al: Reduction
of isoflurane MAC by fentanyl or alfentanil. Anesthesiology 77:A394, 1992.
74.
Lang E, Kapila A, Shlugman D, et al: Reduction
of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology 85:721–728,
1996.
75.
Glass PSA, Jacobs JR, Smith RL, et al: Pharmacokinetic
model-driven infusion of fentanyl: Assessment of accuracy. Anesthesiology 73:1082–1090,
1990.
76.
Dwyer R, Bennett HL, Eger EI 2nd, et al: Isoflurane
anesthesia prevents unconscious learning. Anesth Analg 75:107–112, 1992.
77.
Minto CF, Schnider TW, Short TG, et al: Response
surface model for anesthetic drug interactions. Anesthesiology 92:1603–1616,
2000.
78.
Shafer SL, Varvel JR: Pharmacokinetics, pharmacodynamics,
and rational opioid selection. Anesthesiology 74:53–63, 1991.
79.
Henthorn TK, Krejcie TC, Shanks CA, et al: Time-dependent
distribution volume and kinetics of the pharmacodynamic effector site. J Pharm Sci
81:1136, 1992.
80.
Wagner JG: A safe method for rapidly achieving
plasma concentration plateaus. Clin Pharmacol Ther 16:691–700, 1974.
81.
Bruhn J, Bouillon TW, Ropcke H, Hoeft A: A manual
slide rule for target-controlled infusion of propofol: Development and evaluation.
Anesth Analg 96:142–147, 2003.
82.
Hughes MA, Glass PSA, Jacobs JR: Context-sensitive
half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs.
Anesthesiology 76:334–341, 1992.
83.
Schwilden H: Optimization of the dosage of volatile
anesthetics based on pharmacokinetic and dynamic models. Anasthesiol Intensivmed
Notfallmed Schmerzther 20:307–315, 1985.
84.
Fisher DM, Rosen JI: A pharmacokinetic explanation
for increasing recovery time following larger or repeated doses of nondepolarizing
muscle relaxants. Anesthesiology 65:286–291, 1986.
85.
Youngs EJ, Shafer SL: Pharmacokinetic parameters
relevant to recovery from opioids. Anesthesiology 81:833–842, 1994.
86.
Bailey JM: Technique for quantifying the duration
of intravenous anesthetic effect. Anesthesiology 83:1095–1103, 1995; see comments.
87.
Vuyk J, Mertens MJ, Olofsen E, et al: Propofol
anesthesia and rational opioid selection: Determination of optimal EC50-EC95 propofol-opioid
concentrations that assure adequate anesthesia and a rapid return of consciousness.
Anesthesiology 87:1549–1562, 1997.
88.
Heykants J, Geerts P, Noorduin H, et al: The pharmacokinetic
basis of alfentanil infusion. Eur J Anaesthesiol 1:17, 1987.
89.
Moldenhauer CC, Hug CC Jr: Use of narcotic analgesics
as anaesthetics. Clin Anaesth 2:107, 1984.
90.
Sebel PS, Bovill JG: Opioid analgesics in cardiac
anesthesia. In Kaplan JA (ed): Cardiac Anesthesia.
Orlando, FL, Grune & Stratton, 1987, p 67.
91.
Minto CF, Schnider TW, Shafer SL: Pharmacokinetics
and pharmacodynamics of remifentanil. II. Model application. Anesthesiology 86:24–33,
1997.
92.
White P: Propofol: Pharmacokinetics and pharmacodynamics.
Semin Anesth 7:4, 1988.
93.
Shafer A, Doze VA, Shafer SL, et al: Pharmacokinetics
and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology
69:348–356, 1988.
94.
Barr J, Egan TD, Sandoval NF, et al: Propofol
dosing regimens for ICU sedation based upon an integrated pharmacokinetic-pharmacodynamic
model. Anesthesiology. 95:324–333, 2001.
95.
White PF, Dworsky WA, Horai V, et al: Comparison
of continuous infusion fentanyl or ketamine versus thiopental—determining the
mean effective serum concentrations for outpatient surgery. Anesthesiology 59:564,
1983.
96.
Glass PS, Leiman BC, Reves JG: Etomidate: What
is its present role in anesthesia? Semin Anesth 7:143, 1988.
97.
White PF, Way WL, Trevor AJ: Ketamine: Its pharmacology
and therapeutic uses. Anesthesiology 56:119, 1982.
98.
Reves J, Glass PSA, Jacobs J: Midazolam and alfentanil:
New anesthetic drugs for continuous infusion and an automated method of administration.
Mt Sinai J Med 56:99, 1989.
99.
Kissin I, Brown PT, Bradley EL, et al: Diazepam-morphine
hypnotic synergism in rats. Anesthesiology 70:689–694, 1989.
100.
Theil DR, Stanley TE III, White WD, et al: Midazolam
and fentanyl continuous infusion anesthesia for cardiac surgery: A comparison of
computer-assisted vs. manual infusion systems. J Cardiothorac Vasc Anesth 7:300–306,
1993.
101.
Crankshaw DP, Morgan DJ, Beemer GH, et al: Preprogrammed
infusion of alfentanil to constant arterial plasma concentration. Anesth Analg 76:556,
1993.
102.
Shafer SL: Constant versus optimal plasma concentrations.
Anesth Analg 76:467–469, 1993.
103.
Reves JG, Jacobs JR, Glass PSA: Automated drug
delivery in anesthesia. ASA Refresher Course in Anesthesiology 19, 1991, p 19.
104.
Kruger-Thiemer E: Continuous intravenous infusion
and multicompartment accumulation. Eur J Pharmacol 4:317–324, 1968.
105.
Schwilden H, Schuttler J, Stoekel H: Pharmacokinetics
as applied to total intravenous anaesthesia: Theoretical considerations. Anaesthesia
38(Suppl):51–52, 1983.
106.
Schüttler J, Schwilden H, Stoekel H: Pharmacokinetics
as applied to total intravenous anaesthesia: Practical implications. Anaesthesia
38(Suppl):53–56, 1983.
107.
Bazaral MG, Ciarkowski A: Food and drug administration
regulations and computer-controlled infusion pumps. Int Anesthesiol Clin 33:45–63,
1995
108.
Shafer SL, Siegel LC, Cooke JE, et al: Testing
computer-controlled infusion pumps by simulation. Anesthesiology 68:261–266,
1988.
109.
Varvel JR, Donoho DL, Shafer SL: Measuring the
predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm
20:63, 1992.
110.
Raemer DB, Buschman A, Varvel JR, et al: The
prospective use of population pharmacokinetics in a computer-driven infusion system
for alfentanil. Anesthesiology 73:66–72, 1990.
111.
Schüttler J, Kloos S, Schwilden H, et al:
Total intravenous anaesthesia with propofol and alfentanil by computer-assisted
infusion. Anaesthesia 43(Suppl):2–7, 1988.
112.
Lemmens HJM, Bovill JG, Burm AGL, et al: Alfentanil
infusion in the elderly. Anaesthesia 43:850–856, 1988.
113.
Veselis RA, Glass P, Dnistrian A, et al: Performance
of computer-assisted continuous infusion at low concentrations of intravenous sedatives.
Anesth Analg 84:1049–1057, 1997.
114.
Shafer SL, Varvel SL, Aziz N, et al: The pharmacokinetics
of fentanyl administered by computer controlled infusion pump. Anesthesiology 73:1091–1102,
1990.
115.
Alvis JM, Reves JG, Govier AV, et al: Computer
assisted continuous infusions of fentanyl during cardiac anesthesia: Comparison
with a manual method. Anesthesiology 63:41–49, 1985.
116.
Coetzee JF, Glen JB, Wium CA, et al: Pharmacokinetic
model selection for target controlled infusions of propofol: Assessment of three
parameter sets. Anesthesiology 82:1328–1345, 1995.
117.
Marsh B, White M, Morton N, et al: Pharmacokinetic
model driven infusion of propofol in children. Br J Anaesth 67:41, 1991.
118.
Schüttler J, Stoeckel H: Alfentanil (R39209)
ein neues kurzwirkendes opioid. Pharmakokinetik und erste klinische erfahrungen.
Anaesthesist 31:10, 1982.
119.
Maitre PO, Vozeh S, Heykants J: Population pharmacokinetics
of alfentanil: The average dose-plasma concentration relationship and interindividual
variability in patients. Anesthesiology 66:3–12, 1987.
120.
Crankshaw DP, Boyd MD, Bjorksten AR: Plasma drug
efflux: A new approach to optimization of drug infusion for constant blood concentration
of thiopental and methohexital. Anesthesiology 67:32–41, 1987.
121.
Helmers H, Van Peer A, Woestenborghs R, et al:
Alfentanil kinetics in the elderly. Clin Pharmacol Ther 36:239–243, 1984.
122.
McClain DA, Hug CC Jr: Intravenous fentanyl kinetics.
Clin Pharmacol Ther 28:106, 1980.
123.
Glass PSA, Jacobs J, Alvis M, et al: Computer
assisted continuous infusion of alfentanil during noncardiac anesthesia: A comparison
with a manual method. Anesthesiology 65:A546, 1986.
124.
Greeley WJ, de Bruijn NP, Davis DP: Sufentanil
pharmacokinetics in pediatric cardiovascular patients. Anesth Analg 66:1067–1072,
1987.
125.
Kern FH, Ungerleider RM, Jacobs JR, et al: Computerized
continuous infusion of intravenous anesthetic drugs during pediatric cardiac surgery.
Anesth Analg 72:487–492, 1991.
126.
Mertens MJ, Engbers FH, Burm AG, Vuyk J: Predictive
performance of computer-controlled infusion of remifentanil during propofol/remifentanil
anaesthesia. Br J Anaesth 90:132–141, 2003.
127.
Ghoneim MM, Van Hamme MJ: Pharmacokinetics of
thiopentone: Effects of enflurane and nitrous oxide anaesthesia and surgery. Br
J Anaesth 50:1237–1242, 1978.
128.
Smith MT, Eadie MJ, Brophy TO: The pharmacokinetics
of midazolam in man. Eur J Clin Pharmacol 19:271–278, 1981.
129.
Greenblatt DJ, Abernathy DR, Locniskar A, et al:
Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61:27–35,
1984.
130.
Dyck JB, Varvel J, Hung O, et al: The pharmacokinetics
of propofol versus age [abstract]. Can Anaesth J 38(Suppl): A129, 1991.
131.
Tackley RM, Lewis GTR, Prys-Roberts C, et al:
Computer controlled infusion of propofol. Br J Anesth 62:46, 1989.
132.
Gepts E, Camu F, Cockshott ID, et al: Disposition
of propofol administered as constant rate intravenous infusions in humans. Anesth
Analg 66:1256–1263, 1987.
133.
Glass PSA, Goodman DK, Ginsberg B, et al: Accuracy
of pharmacokinetic model-driven infusion of propofol. Anesthesiology 71:A277, 1989.
134.
Ginsberg B, Howell S, Glass PSA, et al: Pharmacokinetic
model-driven infusion of fentanyl in children. Anesthesiology 85:1268–1275,
1996.
135.
Fiset P, Mathers L, Engstrom R, et al: Pharmacokinetics
of computer controlled alfentanil administration in children undergoing cardiac surgery.
Anesthesiology 83:944–955, 1995.
136.
Bailey JM, Mora CT, Shafer SL, et al: Pharmacokinetics
of propofol in adult patients undergoing coronary revascularization. Anesthesiology
81:1288–1297, 1996.
137.
Vuyk J, Oostwouder CJ, Vletter AA, et al: Gender
differences in the pharmacokinetics of propofol in elderly patients during and after
continuous infusion. Br J Anaesth 86:183–188, 2001.
138.
Schuttler J, Ihmsen H: Population pharmacokinetics
of propofol: A multicenter study. Anesthesiology 92:727–738, 2000.
139.
Kazama T, Kurita T, Morita K, et al: Influence
of hemorrhage on propofol pseudo-steady state concentration. Anesthesiology 97:1156–1161,
2002.
140.
Egan TD, Kuramkote S, Gong G, et al: Fentanyl
pharmacokinetics in hemorrhagic shock: A porcine model. Anesthesiology 91:156–166,
1999.
141.
Johnson KB, Kern SE, Hamber EA, et al: Influence
of hemorrhagic shock on remifentanil: A pharmacokinetic and pharmacodynamic analysis.
Anesthesiology 94:322–332, 2001.
142.
Pavlin DJ, Coda B, Shen DD, et al: Effects of
combining propofol and alfentanil on ventilation, analgesia, sedation, and emesis
in human volunteers. Anesthesiology 84:23–37, 1996.
143.
Kharasch ED, Russell M, Mautz D, et al: The role
of cytochrome P450 3A4 in alfentanil clearance. Anesthesiology 87:36–50, 1997.
144.
Vuyk J, Mertens MJ, Vletter AA, et al: Alfentanil
modifies the pharmacokinetics of propofol in volunteers. Anesthesiology 87:A300,
1997.
145.
Bouillon T, Bruhn J, Radu-Radulescu L, et al:
Non-steady state analysis of the pharmacokinetic interaction between propofol and
remifentanil. Anesthesiology 97:1350–1362, 2002.
146.
Knibbe CA, Zuideveld KP, DeJongh J, et al: Population
pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in
critically ill patients: A comparison between propofol 6% and propofol 1%. Clin
Pharmacol Ther 72:670–684, 2002.
147.
Hill HF, Saeger L, Bjurstrom R, et al: Steady-state
infusions of opioids in human volunteers. I. Pharmacokinetic tailoring. Pain 43:57,
1990.
148.
Maitre PE, Stanski DR: Bayesian forecasting improves
the prediction of intraoperative plasma concentrations of alfentanil. Anesthesiology
69:652–659, 1988.
149.
Wakeling HG, Zimmerman JB, Howell S, Glass PS:
Targeting effect compartment or central compartment concentration of propofol:
What predicts loss of consciousness? Anesthesiology 90:92–97, 1999.
150.
Struys MM, De Smet T, Depoorter B, et al: Comparison
of plasma compartment versus two methods for effect compartment-controlled target-controlled
infusion for propofol. Anesthesiology 92:399–406, 2000.
151.
Kazama T, Ikeda K, Morita K, et al: Comparison
of the effect-site Ke0
s of propofol for blood pressure and EEG bispectral
index in elderly and younger patients. Anesthesiology 90:1517–1527, 1999.
152.
Minto CF, Schnider TW, Gregg KM, et al: Using
the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics.
Anesthesiology 99:324–333, 2003.
153.
Struys M, Versichelen L, Thas O, et al: Comparison
of computer-controlled propofol administration with two manual infusion methods [abstract].
Br J Anaesth 76(Suppl 2):87, 1996.
154.
Russel D, Wilkes MP, Hunter SC, et al: Manual
compared with target-controlled infusion of propofol. Br J Anaesth 75:562–566,
1995.
155.
Servin FS: TCI compared with manually controlled
infusion of propofol: A multicentre study. Anaesthesia 53(Suppl 1):82–86,
1998.
156.
Gale T, Leslie K, Kluger M: Propofol anaesthesia
via target controlled infusion or manually controlled infusion: Effects on the bispectral
index as a measure of anaesthetic depth. Anaesth Intensive Care 29:579–584,
2001.
157.
De Castro V, Godet G, Mencia G, et al: Target-controlled
infusion for remifentanil in vascular patients improves hemodynamics and decreases
remifentanil requirement. Anesth Analg 96:33–38, 2003.
158.
Passot S, Servin F, Allary R, et al: Target-controlled
versus manually-controlled infusion of propofol for direct laryngoscopy and bronchoscopy.
Anesth Analg 94:1212–1216, 2002.
159.
Glass PSA, Ginsberg B, Hawkins ED, et al: Comparison
of sodium thiopental/isoflurane to propofol (delivered by means of a pharmacokinetic
model-driven device) for the induction, maintenance, and recovery from anesthesia.
Anesthesiology 69:A575, 1988.
160.
Godet G, Watremez C, El Kettani C, et al: A comparison
of sevoflurane, target-controlled infusion propofol, and propofol/isoflurane anesthesia
in patients undergoing carotid surgery: A quality of anesthesia and recovery profile.
Anesth Analg 93:560–565, 2001.
161.
Suttner S, Boldt J, Schmidt C, et al: Cost analysis
of target-controlled infusion-based anesthesia compared with standard anesthesia
regimens. Anesth Analg 88:77–82, 1999.
162.
Hill HF, Chapman CR, Saeger LS, et al: Steady-state
infusions of opioids in human. II. Concentration-effect relationships and therapeutic
margins. Pain 43:69–79, 1990.
163.
Hill HF, Mather LE: Patient-controlled analgesia:
Pharmacokinetic and therapeutic considerations. Clin Pharmacokinet 24:124–140,
1993.
164.
Hill H, Mackie A, Coda B, et al: Evaluation of
the accuracy of a pharmacokinetically-based patient-controlled analgesia system.
Eur J Clin Pharmacol 43:67–75, 1992.
165.
Hill HF, Jacobson RC, Coda BA, et al: A computer-based
system for controlling plasma opioid concentration according to patient need for
analgesia. Clin Pharmacokinet 20:319–330, 1991.
166.
Hill HF, Mackie AM, Coda BA, et al: Patient-controlled
analgesic administration: A comparison of steady-state morphine infusions with bolus
doses. Cancer 67:873–882, 1991.
167.
Schnider TW, Gaeta R, Brose W, et al: Derivation
and cross-validation of pharmacokinetic parameters for computer-controlled infusion
of lidocaine in pain therapy. Anesthesiology 84:1043–1050, 1996.
168.
Absalom AR, Sutcliffe N, Kenny GN: Closed-loop
control of anesthesia using Bispectral index: Performance assessment in patients
undergoing major orthopedic surgery under combined general and regional anesthesia.
Anesthesiology 96:67–73, 2002.
169.
O'Hara DA, Bogen DK, Noordergraaf A: The use
of computers for controlling the delivery of anesthesia. Anesthesiology 77:563–581,
1992.
170.
Westenskow DR, Meline L, Pace NL: Controlled
hypotension with sodium nitroprusside: Anesthesiologist versus computer. J Clin
Monit 3:80–86, 1987.
171.
Olkkola KT, Schwilden H: Quantitation of the
interaction between atracurium and succinylcholine using closed-loop feedback control
of infusion of atracurium. Anesthesiology 73:614–618, 1990.
172.
Struys M, Versichelen L, Byttebier G, et al:
Clinical usefulness of the bispectral index for titrating propofol target effect-site
concentration. Anesthesia 53:4–12, 1998.
173.
Morley AP, Derrick J, Seed PT, et al: Isoflurane
dosage for equivalent intraoperative electroencephalographic suppression in patients
with and without epidural blockade. Anesth Analg 95:1412–1418, 2002.
174.
Gentilini A, Rossoni-Gerosa M, Frei CW, et al:
Modeling and closed-loop control of hypnosis by means of bispectral index (BIS)
with isoflurane. IEEE Trans Biomed Eng 48:874–889, 2001.
175.
Kansanaho M, Olkkola KT: The effect of halothane
on mivacurium infusion requirements in adult surgical patients. Acta Anaesthesiol
Scand 41:754–759, 1997.
176.
Struys MM, De Smet T, Versichelen LF, et al:
Comparison of closed-loop controlled administration of propofol using Bispectral
Index as the controlled variable versus "standard practice" controlled administration.
Anesthesiology 95:6–17, 2001.
177.
Kenny GN, Mantzaridis H: Closed-loop control
of propofol anaesthesia. Br J Anaesth 83:223–228, 1999.
178.
Sakai T, Matsuki A, White PF, Giesecke AH: Use
of an EEG-bispectral closed-loop delivery system for administering propofol. Acta
Anaesthesiol Scand 44:1007–1010, 2000.
179.
Morley A, Derrick J, Mainland P, et al: Closed
loop control of anaesthesia: An assessment of the bispectral index as the target
of control. Anaesthesia 55:953–959, 2000.
180.
Glass PS, Rampil IJ: Automated anesthesia: Fact
or fantasy? Anesthesiology 95:1–2, 2001.
181.
Kansanaho M, Olkkola KT, Wierda JM: Dose-response
and concentration-response relation of rocuronium infusion during propofol-nitrous
oxide and isoflurane-nitrous oxide anaesthesia. Eur J Anaesthesiol 14:488–494,
1997.
182.
Meretoja OA, Wirtavuori K, Taivainen T, Olkkola
KT: Time course of potentiation of mivacurium by halothane and isoflurane in children.
Br J Anaesth 76:235–238, 1996.
183.
Milne SE, Kenny GN, Schraag S: Propofol sparing
effect of remifentanil using closed-loop anaesthesia. Br J Anaesth 90:623–629,
2003.
184.
Schwilden H, Schuttler J: The determination of
an effective therapeutic infusion rate for intravenous anesthetics using feedback-controlled
dosages [in German]. Anaesthesist 39:603–606, 1990.
185.
Albrecht S, Frenkel C, Ihmsen H, Schuttler J:
A rational approach to the control of sedation in intensive care unit patients based
on closed-loop control. Eur J Anaesthesiol 16:678–687, 1999.