  | 
    
	  | 
REFERENCES
1.
 Corssen G, Reves JG, Stanley T:  Intravenous Anesthesia
and Analgesia.  Philadelphia, Lea & Febiger, 1988.
2.
 Schwilden H:  A general method for calculating the
dosage scheme in linear pharmacokinetics.  Eur J Clin Pharmacol 20:379–386,
1981.
3.
 Reves JG, Sheppard LC, Wallach R, et al:  Therapeutic
uses of sodium nitroprusside and an automated method of administration.  Int Anesthesiol
Clin 16:51–88, 1978.
4.
 Meline LJ, Westenskow DK, Pace NL, et al:  Computer-controlled
regulation of sodium nitroprusside infusion.  Anesth Analg 64:38, 1985.
5.
 Reid JA, Kenny GN:  Evaluation of closed-loop control
of arterial pressure after cardiopulmonary bypass.  Br J Anaesth 59:247–255,
1987.
6.
 Colvin JR, Kenny GN:  Development and evaluation
of a dual-pump microcomputer-based closed-loop arterial pressure control system.
 Int J Clin Monit Comput 6:31–35, 1989.
7.
 Grosmaire EK:  Computer-controlled sodium nitroprusside
infusions in patients after cardiac surgery.  Heart Lung 21:214, 1992.
8.
 de Vries JW, Ros HH, Booij LH:  Infusion of vecuronium
controlled by a closed-loop system.  Br J Anaesth 58:1100–1103, 1986.
9.
 Olkkola KT, Schwilden H:  Quantitation of the interaction
between atracurium and succinylcholine using closed-loop feedback control of infusion
of atracurium.  Anesthesiology 73:614–618, 1990.
10.
 O'Hara DA, Derbyshire GJ, Overdyk FJ, et al:  Closed-loop
infusion of atracurium with four different anesthetic techniques.  Anesthesiology
74:258–263, 1991.
11.
 Schwilden H, Olkkola KT:  Use of a pharmacokinetic-dynamic
model for the automatic feedback control of atracurium.  Eur J Clin Pharmacol 40:293–296,
1991.
12.
 Uys PC, Morrell DF, Bradlow HS, et al:  Self-tuning,
microprocessor-based closed-loop control of atracurium-induced neuromuscular blockade.
 Br J Anaesth 61:685–692, 1988.
13.
 Wait CM, Goat VA, Blogg CE:  Feedback control of
neuromuscular blockade:  A simple system for infusion of atracurium.  Anaesthesia
42:1212–1217, 1987.
14.
 Webster NR, Cohen AT:  Closed-loop administration
of atracurium:  Steady-state neuromuscular blockade during surgery using a computer
controlled closed-loop atracurium infusion.  Anaesthesia 42:1085–1091, 1987.
15.
 Schwilden H, Schüttler J, Stockel H:  Closed-loop
feedback control of methohexital anesthesia by quantitative EEG analysis in humans.
 Anesthesiology 67:341, 1987.
16.
 Schwilden H, Stoeckel H:  Effective therapeutic
infusions produced by closed-loop feedback control of methohexital administration
during total intravenous anesthesia with fentanyl.  Anesthesiology 73:225–229,
1990.
17.
 Schwilden H, Stoeckel H, Schuttler J:  Closed-loop
feedback control of propofol anaesthesia by quantitative EEG analysis in humans.
 Br J Anaesth 62:290–296, 1989.
18.
 Kenny GNC, Davies FW, Mantzardis H, et al:  Closed-loop
control of anesthesia.  Anesthesiology 77:A328, 1992.
19.
 Struys M, Desmet T, Audenaert S, et al:  Development
of a closed loop system for propofol using bispectral analysis and a patient-individual
pharmacokinetic-dynamic (PK-PD) model:  Preliminary results [abstract].  Br J Anaesthesia
78(Suppl 1):23, 1997.
20.
 Sigl JC, Chamoun NG:  An introduction to bispectral
analysis for the electroencephalogram.  J Clin Monit 10:392–404, 1994.
21.
 White PF:  Use of continuous infusion versus intermittent
bolus administration of fentanyl or ketamine during outpatient anesthesia.  Anesthesiology
59:294, 1983.
22.
 Ausems ME, Vuyk J, Hug CC, et al:  Comparison of
a computer-assisted infusion versus intermittent bolus administration of alfentanil
as a supplement to nitrous oxide for lower abdominal surgery.  Anesthesiology 68:851–861,
1988.
23.
 Avram MJ, Krejcie TC:  Using front-end kinetics
to optimize target-controlled drug infusions.  Anesthesiology 99:1078–1086,
2003.
24.
 Krejcie TC, Avram MJ, Gentry WB, et al:  A recirculatory
model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis
of arterial and mixed venous data from dogs.  J Pharmacokinet Biopharm 25:169–190,
1997.
25.
 Hull CJ, Van Beem HB, McLeod K, et al:  A pharmacodynamic
model for pancuronium.  Br J Anaesth 50:1113–1123, 1978.
26.
 Sheiner LB, Stanski DR, Vozeh S, et al:  Simultaneous
modeling of pharmacokinetics and pharmacodynamics:  Application to D-tubocurarine.
 Clin Pharmacol Ther 25:358–371, 1979.
27.
 Glass PS, Hardman D, Kamiyama Y, et al:  Preliminary
pharmacokinetics and pharmacodynamics of an ultra-short-acting opioid:  Remifentanil
(GI87084B).  Anesth Analg 77:1031–1040, 1993.
28.
 Egan TD, Lemmens HJM, Fiset P, et al:  The pharmacokinetics
of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers.
 Anesthesiology 79:881–892, 1993.
29.
 Ludbrook GL, Visco E, Lam AM:  Propofol:  Relation
between brain concentrations, electroencephalogram, middle cerebral artery blood
flow velocity, and cerebral oxygen extraction during induction of anesthesia.  Anesthesiology
97:1363–1370, 2002.
30.
 Shafer SL, Gregg K:  Algorithms to rapidly achieve
and maintain stable drug concentrations at the site of drug effect with a computer
controlled infusion pump.  J Pharmacokinet Biopharm 20:147–169, 1992.
31.
 Jacobs JR, Williams EA:  Algorithm to control "effect
compartment" drug concentrations in pharmacokinetic model-driven drug delivery. 
IEEE Trans Biomed Eng 40:993–999, 1993.
32.
 Bouillon T, Schmidt C, Garstka G, et al:  Pharmacokinetic-pharmacodynamic
modeling of the respiratory depressant effect of alfentanil.  Anesthesiology 91:144–155,
1999.
33.
 Bouillon T, Bruhn J, Radu-Radulescu L, et al: 
A model of the ventilatory depressant potency of remifentanil in the non-steady state.
 Anesthesiology 99:779–787, 2003.
34.
 Scott JC, Ponganis KV, Stanski DR:  EEG quantitation
of narcotic effect:  The comparative pharmacodynamics of fentanyl and alfentanil.
 Anesthesiology 62:234–241, 1985.
35.
 Eger EID, Saidman LJ, Brandstater B:  Minimum alveolar
anesthetic concentration:  A standard of anesthetic potency.  Anesthesiology 26:756–763,
1965.
36.
 Ausems ME, Stanski DR, Hug CC:  An evaluation of
the accuracy of pharmacokinetic data for the computer assisted infusion of alfentanil.
 Br J Anaesth 57:1217–1225, 1985.
37.
 Hung OR, Varvel JR, Shafer SL, et al:  Thiopental
pharmacodynamics II. Quantitation of clinical and electroencephalographic depth of
anesthesia.  Anesthesiology 77:237–244, 1992.
38.
 Telford RJ, Glass PSA, Goodman D, et al:  Fentanyl
does not alter the "sleep" plasma concentration of thiopental.  Anesth Analg 75:523–529,
1992.
39.
 Vuyk J, Engbers FHM, Lemmens HJM, et al:  Pharmacodynamics
of propofol in female patients.  Anesthesiology 77:3–9, 1992.
40.
 Vuyk J, Lim T, Engbers FH, et al:  The pharmacodynamic
interaction of propofol and alfentanil during lower abdominal surgery in women. 
Anesthesiology 83:8–22, 1995.
41.
 Smith C, McEwan AI, Jhaveri R, et al:  Reduction
of propofol Cp50 by fentanyl.  Anesthesiology 77:A340, 1992.
42.
 Jacobs JR, Reves JG, Marty J, et al:  Aging increases
pharmacodynamic sensitivity to the hypnotic effects of midazolam.  Anesth Analg 80:143–148,
1995.
43.
 Scott JC, Stanski DR:  Decreased fentanyl and alfentanil
dose requirements with age:  A simultaneous pharmacokinetic and pharmacodynamic evaluation.
 J Pharmacol Exp Ther 240:159–166, 1987.
44.
 Scott JC, Cooke JE, Stanski DR:  Electroencephalographic
quantitation of opioid effect:  Comparative pharmacodynamics of fentanyl and sufentanil.
 Anesthesiology 74:34, 1991.
45.
 Egan TD, Lemmens HJ, Fiset P, et al:  The pharmacokinetics
of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers.
 Anesthesiology 79:881–892, 1993.
46.
 Egan TD, Minto CF, Hermann DJ, et al:  Remifentanil
versus alfentanil:  Comparative pharmacokinetics and pharmacodynamics in healthy
adult male volunteers.  Anesthesiology 84:821–833, 1996.
47.
 Minto CF, Schnider TW, Egan TD, et al:  The influence
of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. 
I. Model development.  Anesthesiology 86:10–23, 1997.
48.
 Lemmens HJM, Dyck JB, Shafer SL, et al:  The application
of pharmacokinetics/dynamics and computer simulations to drug development:  A3665
versus fentanyl and alfentanil.  Anesthesiology 77:A456, 1992.
49.
 Homer TD, Stanski DR:  The effect of increasing
age on thiopental disposition and anesthetic requirement.  Anesthesiology 62:714–724,
1985.
50.
 Stanski DR, Maitre PO:  Population pharmacokinetics
and pharmacodynamics of thiopental:  The effect of age revisited.  Anesthesiology
72:412–422, 1990.
51.
 Arden JR, Holley FO, Stanski DR:  Increased sensitivity
to etomidate in the elderly:  Initial distribution versus altered brain response.
 Anesthesiology 65:19, 1986.
52.
 Billard V, Gambus PL, Chamoun N, et al:  A comparison
of spectral edge, delta power, and bispectral index as EEG measures of alfentanil,
propofol, and midazolam drug effect.  Clin Pharmacol Ther 61:45–58, 1997.
53.
 Schnider TW, Minto CF, Fiset P, et al:  Semilinear
canonical correlation applied to the measurement of the electroencephalographic effects
of midazolam and flumazenil reversal.  Anesthesiology 84:510–519, 1996.
54.
 Egan TD, Muir KT, Hermann DJ, et al:  The electroencephalogram
(EEG) and clinical measure of opioid potency:  Defining the EEG-clinical potency
relationship ("fingerprint") with application to remifentanil.  Int J Pharm Med 15:1–9,
2001.
55.
 Ausems ME, Hug CC Jr, Stanski DR, et al:  Plasma
concentrations of alfentanil required to supplement nitrous oxide anesthesia for
general surgery.  Anesthesiology 65:362–373, 1986.
56.
 Glass PSA, Doherty M, Jacobs JR, et al:  Plasma
concentration of fentanyl, with 70% nitrous oxide, to prevent movement at skin incision.
 Anesthesiology 78:842–847, 1993.
57.
 Gourlay GK, Kowalski SR, Plummer JL, et al:  Fentanyl
blood concentration-analgesic response relationship in the treatment of postoperative
pain.  Anesth Analg 67:329–337, 1988.
58.
 Van den Nieuwenhuyzen MCO, Engbers FHM, Burm AGL,
et al:  Computer-controlled infusion of alfentanil versus PCA-morphine for postoperative
analgesia:  A double-blind study.  Anesth Analg 40:1112–1118, 1995.
59.
 Lehmann KA:  Patient-controlled analgesia for postoperative
pain.  Adv Pain Res Ther 14:297, 1990.
60.
 Lehmann KA, Gerhard A, Horrichs-Haermeyer G, et
al:  Postoperative patient-controlled analgesia with sufentanil:  Analgesic efficacy
and minimum effective concentrations.  Acta Anaesthesiol Scand 35:221, 1991.
61.
 Kissin I, Mason JOD, Bradley EL Jr:  Morphine and
fentanyl interactions with thiopental in relation to movement response to noxious
stimulation.  Anesth Analg 65:1149–1154, 1986.
62.
 Kissin I, Mason JO, Bradley EL:  Morphine and fentanyl
hypnotic interactions with thiopental.  Anesthesiology 67:331–335, 1987.
63.
 Mehta D, Bradley EL Jr, Kissin I:  Effect of alfentanil
on hypnotic and antinociceptive components of thiopental sodium anesthesia.  J Clin
Anesth 3:280–284, 1991.
64.
 Kissin I, Brown PT, Bradley EL Jr:  Sedative and
hypnotic midazolam-morphine interactions in rats.  Anesth Analg 71:137–143,
1990.
65.
 Ropcke H, Schwilden H:  The interaction of nitrous
oxide and enflurane on the EEG median of 2–3 Hz is additive, but weaker than
at 1.0 MAC [in German].  Anaesthesist 45:819–825, 1996.
66.
 Gonsowski CT, Eger EI 2nd:  Nitrous oxide minimum
alveolar anesthetic concentration in rats is greater than previously reported.  Anesth
Analg 79:710–712, 1994.
67.
 Deady JE, Koblin DD, Eger EI 2nd, et al:  Anesthetic
potencies and the unitary theory of narcosis.  Anesth Analg 60:380–384, 1981.
68.
 Targ AG, Yasuda N, Eger EI 2nd, et al:  Halogenation
and anesthetic potency.  Anesth Analg 68:599–602, 1989; see comments.
69.
 Kissin I:  General anesthetic action:  An obsolete
notion?  Anesth Analg 76:215–218, 1993.
70.
 Katoh T, Ikeda I:  The effects of fentanyl on sevoflurane
requirements for loss of consciousness and skin incision.  Anesthesiology 88:18–24,
1998.
71.
 McEwan AI, Smith C, Dyar O, et al:  Isoflurane
MAC reduction by fentanyl.  Anesthesiology 78:864–869, 1993.
72.
 Brunner MD, Braithwaite P, Jhaveri R, et al:  The
MAC reduction of isoflurane by sufentanil.  Br J Anaesth 72:42–46, 1994.
73.
 Westmoreland C, Sebel PS, Groper A, et al:  Reduction
of isoflurane MAC by fentanyl or alfentanil.  Anesthesiology 77:A394, 1992.
74.
 Lang E, Kapila A, Shlugman D, et al:  Reduction
of isoflurane minimal alveolar concentration by remifentanil.  Anesthesiology 85:721–728,
1996.
75.
 Glass PSA, Jacobs JR, Smith RL, et al:  Pharmacokinetic
model-driven infusion of fentanyl:  Assessment of accuracy.  Anesthesiology 73:1082–1090,
1990.
76.
 Dwyer R, Bennett HL, Eger EI 2nd, et al:  Isoflurane
anesthesia prevents unconscious learning.  Anesth Analg 75:107–112, 1992.
77.
 Minto CF, Schnider TW, Short TG, et al:  Response
surface model for anesthetic drug interactions.  Anesthesiology 92:1603–1616,
2000.
78.
 Shafer SL, Varvel JR:  Pharmacokinetics, pharmacodynamics,
and rational opioid selection.  Anesthesiology 74:53–63, 1991.
79.
 Henthorn TK, Krejcie TC, Shanks CA, et al:  Time-dependent
distribution volume and kinetics of the pharmacodynamic effector site.  J Pharm Sci
81:1136, 1992.
80.
 Wagner JG:  A safe method for rapidly achieving
plasma concentration plateaus.  Clin Pharmacol Ther 16:691–700, 1974.
81.
 Bruhn J, Bouillon TW, Ropcke H, Hoeft A:  A manual
slide rule for target-controlled infusion of propofol:  Development and evaluation.
 Anesth Analg 96:142–147, 2003.
82.
 Hughes MA, Glass PSA, Jacobs JR:  Context-sensitive
half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs.
 Anesthesiology 76:334–341, 1992.
83.
 Schwilden H:  Optimization of the dosage of volatile
anesthetics based on pharmacokinetic and dynamic models.  Anasthesiol Intensivmed
Notfallmed Schmerzther 20:307–315, 1985.
84.
 Fisher DM, Rosen JI:  A pharmacokinetic explanation
for increasing recovery time following larger or repeated doses of nondepolarizing
muscle relaxants.  Anesthesiology 65:286–291, 1986.
85.
 Youngs EJ, Shafer SL:  Pharmacokinetic parameters
relevant to recovery from opioids.  Anesthesiology 81:833–842, 1994.
86.
 Bailey JM:  Technique for quantifying the duration
of intravenous anesthetic effect.  Anesthesiology 83:1095–1103, 1995; see comments.
87.
 Vuyk J, Mertens MJ, Olofsen E, et al:  Propofol
anesthesia and rational opioid selection:  Determination of optimal EC50-EC95 propofol-opioid
concentrations that assure adequate anesthesia and a rapid return of consciousness.
 Anesthesiology 87:1549–1562, 1997.
88.
 Heykants J, Geerts P, Noorduin H, et al:  The pharmacokinetic
basis of alfentanil infusion.  Eur J Anaesthesiol 1:17, 1987.
89.
 Moldenhauer CC, Hug CC Jr:  Use of narcotic analgesics
as anaesthetics.  Clin Anaesth 2:107, 1984.
90.
 Sebel PS, Bovill JG:  Opioid analgesics in cardiac
anesthesia.  In Kaplan JA (ed):  Cardiac Anesthesia.
 Orlando, FL, Grune & Stratton, 1987, p 67.
91.
 Minto CF, Schnider TW, Shafer SL:  Pharmacokinetics
and pharmacodynamics of remifentanil.  II. Model application.  Anesthesiology 86:24–33,
1997.
92.
 White P:  Propofol:  Pharmacokinetics and pharmacodynamics.
 Semin Anesth 7:4, 1988.
93.
 Shafer A, Doze VA, Shafer SL, et al:  Pharmacokinetics
and pharmacodynamics of propofol infusions during general anesthesia.  Anesthesiology
69:348–356, 1988.
94.
 Barr J, Egan TD, Sandoval NF, et al:  Propofol
dosing regimens for ICU sedation based upon an integrated pharmacokinetic-pharmacodynamic
model.  Anesthesiology.  95:324–333, 2001.
95.
 White PF, Dworsky WA, Horai V, et al:  Comparison
of continuous infusion fentanyl or ketamine versus thiopental—determining the
mean effective serum concentrations for outpatient surgery.  Anesthesiology 59:564,
1983.
96.
 Glass PS, Leiman BC, Reves JG:  Etomidate:  What
is its present role in anesthesia?  Semin Anesth 7:143, 1988.
97.
 White PF, Way WL, Trevor AJ:  Ketamine:  Its pharmacology
and therapeutic uses.  Anesthesiology 56:119, 1982.
98.
 Reves J, Glass PSA, Jacobs J:  Midazolam and alfentanil:
 New anesthetic drugs for continuous infusion and an automated method of administration.
 Mt Sinai J Med 56:99, 1989.
99.
 Kissin I, Brown PT, Bradley EL, et al:  Diazepam-morphine
hypnotic synergism in rats.  Anesthesiology 70:689–694, 1989.
100.
 Theil DR, Stanley TE III, White WD, et al:  Midazolam
and fentanyl continuous infusion anesthesia for cardiac surgery:  A comparison of
computer-assisted vs. manual infusion systems.  J Cardiothorac Vasc Anesth 7:300–306,
1993.
101.
 Crankshaw DP, Morgan DJ, Beemer GH, et al:  Preprogrammed
infusion of alfentanil to constant arterial plasma concentration.  Anesth Analg 76:556,
1993.
102.
 Shafer SL:  Constant versus optimal plasma concentrations.
 Anesth Analg 76:467–469, 1993.
103.
 Reves JG, Jacobs JR, Glass PSA:  Automated drug
delivery in anesthesia.  ASA Refresher Course in Anesthesiology 19, 1991, p 19.
104.
 Kruger-Thiemer E:  Continuous intravenous infusion
and multicompartment accumulation.  Eur J Pharmacol 4:317–324, 1968.
105.
 Schwilden H, Schuttler J, Stoekel H:  Pharmacokinetics
as applied to total intravenous anaesthesia:  Theoretical considerations.  Anaesthesia
38(Suppl):51–52, 1983.
106.
 Schüttler J, Schwilden H, Stoekel H:  Pharmacokinetics
as applied to total intravenous anaesthesia:  Practical implications.  Anaesthesia
38(Suppl):53–56, 1983.
107.
 Bazaral MG, Ciarkowski A:  Food and drug administration
regulations and computer-controlled infusion pumps.  Int Anesthesiol Clin 33:45–63,
1995
108.
 Shafer SL, Siegel LC, Cooke JE, et al:  Testing
computer-controlled infusion pumps by simulation.  Anesthesiology 68:261–266,
1988.
109.
 Varvel JR, Donoho DL, Shafer SL:  Measuring the
predictive performance of computer-controlled infusion pumps.  J Pharmacokinet Biopharm
20:63, 1992.
110.
 Raemer DB, Buschman A, Varvel JR, et al:  The
prospective use of population pharmacokinetics in a computer-driven infusion system
for alfentanil.  Anesthesiology 73:66–72, 1990.
111.
 Schüttler J, Kloos S, Schwilden H, et al:
 Total intravenous anaesthesia with propofol and alfentanil by computer-assisted
infusion.  Anaesthesia 43(Suppl):2–7, 1988.
112.
 Lemmens HJM, Bovill JG, Burm AGL, et al:  Alfentanil
infusion in the elderly.  Anaesthesia 43:850–856, 1988.
113.
 Veselis RA, Glass P, Dnistrian A, et al:  Performance
of computer-assisted continuous infusion at low concentrations of intravenous sedatives.
 Anesth Analg 84:1049–1057, 1997.
114.
 Shafer SL, Varvel SL, Aziz N, et al:  The pharmacokinetics
of fentanyl administered by computer controlled infusion pump.  Anesthesiology 73:1091–1102,
1990.
115.
 Alvis JM, Reves JG, Govier AV, et al:  Computer
assisted continuous infusions of fentanyl during cardiac anesthesia:  Comparison
with a manual method.  Anesthesiology 63:41–49, 1985.
116.
 Coetzee JF, Glen JB, Wium CA, et al:  Pharmacokinetic
model selection for target controlled infusions of propofol:  Assessment of three
parameter sets.  Anesthesiology 82:1328–1345, 1995.
117.
 Marsh B, White M, Morton N, et al:  Pharmacokinetic
model driven infusion of propofol in children.  Br J Anaesth 67:41, 1991.
118.
 Schüttler J, Stoeckel H:  Alfentanil (R39209)
ein neues kurzwirkendes opioid.  Pharmakokinetik und erste klinische erfahrungen.
 Anaesthesist 31:10, 1982.
119.
 Maitre PO, Vozeh S, Heykants J:  Population pharmacokinetics
of alfentanil:  The average dose-plasma concentration relationship and interindividual
variability in patients.  Anesthesiology 66:3–12, 1987.
120.
 Crankshaw DP, Boyd MD, Bjorksten AR:  Plasma drug
efflux:  A new approach to optimization of drug infusion for constant blood concentration
of thiopental and methohexital.  Anesthesiology 67:32–41, 1987.
121.
 Helmers H, Van Peer A, Woestenborghs R, et al:
 Alfentanil kinetics in the elderly.  Clin Pharmacol Ther 36:239–243, 1984.
122.
 McClain DA, Hug CC Jr:  Intravenous fentanyl kinetics.
 Clin Pharmacol Ther 28:106, 1980.
123.
 Glass PSA, Jacobs J, Alvis M, et al:  Computer
assisted continuous infusion of alfentanil during noncardiac anesthesia:  A comparison
with a manual method.  Anesthesiology 65:A546, 1986.
124.
 Greeley WJ, de Bruijn NP, Davis DP:  Sufentanil
pharmacokinetics in pediatric cardiovascular patients.  Anesth Analg 66:1067–1072,
1987.
125.
 Kern FH, Ungerleider RM, Jacobs JR, et al:  Computerized
continuous infusion of intravenous anesthetic drugs during pediatric cardiac surgery.
 Anesth Analg 72:487–492, 1991.
126.
 Mertens MJ, Engbers FH, Burm AG, Vuyk J:  Predictive
performance of computer-controlled infusion of remifentanil during propofol/remifentanil
anaesthesia.  Br J Anaesth 90:132–141, 2003.
127.
 Ghoneim MM, Van Hamme MJ:  Pharmacokinetics of
thiopentone:  Effects of enflurane and nitrous oxide anaesthesia and surgery.  Br
J Anaesth 50:1237–1242, 1978.
128.
 Smith MT, Eadie MJ, Brophy TO:  The pharmacokinetics
of midazolam in man.  Eur J Clin Pharmacol 19:271–278, 1981.
129.
 Greenblatt DJ, Abernathy DR, Locniskar A, et al:
 Effect of age, gender, and obesity on midazolam kinetics.  Anesthesiology 61:27–35,
1984.
130.
 Dyck JB, Varvel J, Hung O, et al:  The pharmacokinetics
of propofol versus age [abstract].  Can Anaesth J 38(Suppl):  A129, 1991.
131.
 Tackley RM, Lewis GTR, Prys-Roberts C, et al:
 Computer controlled infusion of propofol.  Br J Anesth 62:46, 1989.
132.
 Gepts E, Camu F, Cockshott ID, et al:  Disposition
of propofol administered as constant rate intravenous infusions in humans.  Anesth
Analg 66:1256–1263, 1987.
133.
 Glass PSA, Goodman DK, Ginsberg B, et al:  Accuracy
of pharmacokinetic model-driven infusion of propofol.  Anesthesiology 71:A277, 1989.
134.
 Ginsberg B, Howell S, Glass PSA, et al:  Pharmacokinetic
model-driven infusion of fentanyl in children.  Anesthesiology 85:1268–1275,
1996.
135.
 Fiset P, Mathers L, Engstrom R, et al:  Pharmacokinetics
of computer controlled alfentanil administration in children undergoing cardiac surgery.
 Anesthesiology 83:944–955, 1995.
136.
 Bailey JM, Mora CT, Shafer SL, et al:  Pharmacokinetics
of propofol in adult patients undergoing coronary revascularization.  Anesthesiology
81:1288–1297, 1996.
137.
 Vuyk J, Oostwouder CJ, Vletter AA, et al:  Gender
differences in the pharmacokinetics of propofol in elderly patients during and after
continuous infusion.  Br J Anaesth 86:183–188, 2001.
138.
 Schuttler J, Ihmsen H:  Population pharmacokinetics
of propofol:  A multicenter study.  Anesthesiology 92:727–738, 2000.
139.
 Kazama T, Kurita T, Morita K, et al:  Influence
of hemorrhage on propofol pseudo-steady state concentration.  Anesthesiology 97:1156–1161,
2002.
140.
 Egan TD, Kuramkote S, Gong G, et al:  Fentanyl
pharmacokinetics in hemorrhagic shock:  A porcine model.  Anesthesiology 91:156–166,
1999.
141.
 Johnson KB, Kern SE, Hamber EA, et al:  Influence
of hemorrhagic shock on remifentanil:  A pharmacokinetic and pharmacodynamic analysis.
 Anesthesiology 94:322–332, 2001.
142.
 Pavlin DJ, Coda B, Shen DD, et al:  Effects of
combining propofol and alfentanil on ventilation, analgesia, sedation, and emesis
in human volunteers.  Anesthesiology 84:23–37, 1996.
143.
 Kharasch ED, Russell M, Mautz D, et al:  The role
of cytochrome P450 3A4 in alfentanil clearance.  Anesthesiology 87:36–50, 1997.
144.
 Vuyk J, Mertens MJ, Vletter AA, et al:  Alfentanil
modifies the pharmacokinetics of propofol in volunteers.  Anesthesiology 87:A300,
1997.
145.
 Bouillon T, Bruhn J, Radu-Radulescu L, et al:
 Non-steady state analysis of the pharmacokinetic interaction between propofol and
remifentanil.  Anesthesiology 97:1350–1362, 2002.
146.
 Knibbe CA, Zuideveld KP, DeJongh J, et al:  Population
pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in
critically ill patients:  A comparison between propofol 6% and propofol 1%.  Clin
Pharmacol Ther 72:670–684, 2002.
147.
 Hill HF, Saeger L, Bjurstrom R, et al:  Steady-state
infusions of opioids in human volunteers.  I. Pharmacokinetic tailoring.  Pain 43:57,
1990.
148.
 Maitre PE, Stanski DR:  Bayesian forecasting improves
the prediction of intraoperative plasma concentrations of alfentanil.  Anesthesiology
69:652–659, 1988.
149.
 Wakeling HG, Zimmerman JB, Howell S, Glass PS:
 Targeting effect compartment or central compartment concentration of propofol: 
What predicts loss of consciousness?  Anesthesiology 90:92–97, 1999.
150.
 Struys MM, De Smet T, Depoorter B, et al:  Comparison
of plasma compartment versus two methods for effect compartment-controlled target-controlled
infusion for propofol.  Anesthesiology 92:399–406, 2000.
151.
 Kazama T, Ikeda K, Morita K, et al:  Comparison
of the effect-site Ke0
s of propofol for blood pressure and EEG bispectral
index in elderly and younger patients.  Anesthesiology 90:1517–1527, 1999.
152.
 Minto CF, Schnider TW, Gregg KM, et al:  Using
the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics.
 Anesthesiology 99:324–333, 2003.
153.
 Struys M, Versichelen L, Thas O, et al:  Comparison
of computer-controlled propofol administration with two manual infusion methods [abstract].
 Br J Anaesth 76(Suppl 2):87, 1996.
154.
 Russel D, Wilkes MP, Hunter SC, et al:  Manual
compared with target-controlled infusion of propofol.  Br J Anaesth 75:562–566,
1995.
155.
 Servin FS:  TCI compared with manually controlled
infusion of propofol:  A multicentre study.  Anaesthesia 53(Suppl 1):82–86,
1998.
156.
 Gale T, Leslie K, Kluger M:  Propofol anaesthesia
via target controlled infusion or manually controlled infusion:  Effects on the bispectral
index as a measure of anaesthetic depth.  Anaesth Intensive Care 29:579–584,
2001.
157.
 De Castro V, Godet G, Mencia G, et al:  Target-controlled
infusion for remifentanil in vascular patients improves hemodynamics and decreases
remifentanil requirement.  Anesth Analg 96:33–38, 2003.
158.
 Passot S, Servin F, Allary R, et al:  Target-controlled
versus manually-controlled infusion of propofol for direct laryngoscopy and bronchoscopy.
 Anesth Analg 94:1212–1216, 2002.
159.
 Glass PSA, Ginsberg B, Hawkins ED, et al:  Comparison
of sodium thiopental/isoflurane to propofol (delivered by means of a pharmacokinetic
model-driven device) for the induction, maintenance, and recovery from anesthesia.
 Anesthesiology 69:A575, 1988.
160.
 Godet G, Watremez C, El Kettani C, et al:  A comparison
of sevoflurane, target-controlled infusion propofol, and propofol/isoflurane anesthesia
in patients undergoing carotid surgery:  A quality of anesthesia and recovery profile.
 Anesth Analg 93:560–565, 2001.
161.
 Suttner S, Boldt J, Schmidt C, et al:  Cost analysis
of target-controlled infusion-based anesthesia compared with standard anesthesia
regimens.  Anesth Analg 88:77–82, 1999.
162.
 Hill HF, Chapman CR, Saeger LS, et al:  Steady-state
infusions of opioids in human.  II. Concentration-effect relationships and therapeutic
margins.  Pain 43:69–79, 1990.
163.
 Hill HF, Mather LE:  Patient-controlled analgesia:
 Pharmacokinetic and therapeutic considerations.  Clin Pharmacokinet 24:124–140,
1993.
164.
 Hill H, Mackie A, Coda B, et al:  Evaluation of
the accuracy of a pharmacokinetically-based patient-controlled analgesia system.
 Eur J Clin Pharmacol 43:67–75, 1992.
165.
 Hill HF, Jacobson RC, Coda BA, et al:  A computer-based
system for controlling plasma opioid concentration according to patient need for
analgesia.  Clin Pharmacokinet 20:319–330, 1991.
166.
 Hill HF, Mackie AM, Coda BA, et al:  Patient-controlled
analgesic administration:  A comparison of steady-state morphine infusions with bolus
doses.  Cancer 67:873–882, 1991.
167.
 Schnider TW, Gaeta R, Brose W, et al:  Derivation
and cross-validation of pharmacokinetic parameters for computer-controlled infusion
of lidocaine in pain therapy.  Anesthesiology 84:1043–1050, 1996.
168.
 Absalom AR, Sutcliffe N, Kenny GN:  Closed-loop
control of anesthesia using Bispectral index:  Performance assessment in patients
undergoing major orthopedic surgery under combined general and regional anesthesia.
 Anesthesiology 96:67–73, 2002.
169.
 O'Hara DA, Bogen DK, Noordergraaf A:  The use
of computers for controlling the delivery of anesthesia.  Anesthesiology 77:563–581,
1992.
170.
 Westenskow DR, Meline L, Pace NL:  Controlled
hypotension with sodium nitroprusside:  Anesthesiologist versus computer.  J Clin
Monit 3:80–86, 1987.
171.
 Olkkola KT, Schwilden H:  Quantitation of the
interaction between atracurium and succinylcholine using closed-loop feedback control
of infusion of atracurium.  Anesthesiology 73:614–618, 1990.
172.
 Struys M, Versichelen L, Byttebier G, et al: 
Clinical usefulness of the bispectral index for titrating propofol target effect-site
concentration.  Anesthesia 53:4–12, 1998.
173.
 Morley AP, Derrick J, Seed PT, et al:  Isoflurane
dosage for equivalent intraoperative electroencephalographic suppression in patients
with and without epidural blockade.  Anesth Analg 95:1412–1418, 2002.
174.
 Gentilini A, Rossoni-Gerosa M, Frei CW, et al:
 Modeling and closed-loop control of hypnosis by means of bispectral index (BIS)
with isoflurane.  IEEE Trans Biomed Eng 48:874–889, 2001.
175.
 Kansanaho M, Olkkola KT:  The effect of halothane
on mivacurium infusion requirements in adult surgical patients.  Acta Anaesthesiol
Scand 41:754–759, 1997.
176.
 Struys MM, De Smet T, Versichelen LF, et al: 
Comparison of closed-loop controlled administration of propofol using Bispectral
Index as the controlled variable versus "standard practice" controlled administration.
 Anesthesiology 95:6–17, 2001.
177.
 Kenny GN, Mantzaridis H:  Closed-loop control
of propofol anaesthesia.  Br J Anaesth 83:223–228, 1999.
178.
 Sakai T, Matsuki A, White PF, Giesecke AH:  Use
of an EEG-bispectral closed-loop delivery system for administering propofol.  Acta
Anaesthesiol Scand 44:1007–1010, 2000.
179.
 Morley A, Derrick J, Mainland P, et al:  Closed
loop control of anaesthesia:  An assessment of the bispectral index as the target
of control.  Anaesthesia 55:953–959, 2000.
180.
 Glass PS, Rampil IJ:  Automated anesthesia:  Fact
or fantasy?  Anesthesiology 95:1–2, 2001.
181.
 Kansanaho M, Olkkola KT, Wierda JM:  Dose-response
and concentration-response relation of rocuronium infusion during propofol-nitrous
oxide and isoflurane-nitrous oxide anaesthesia.  Eur J Anaesthesiol 14:488–494,
1997.
182.
 Meretoja OA, Wirtavuori K, Taivainen T, Olkkola
KT:  Time course of potentiation of mivacurium by halothane and isoflurane in children.
 Br J Anaesth 76:235–238, 1996.
183.
 Milne SE, Kenny GN, Schraag S:  Propofol sparing
effect of remifentanil using closed-loop anaesthesia.  Br J Anaesth 90:623–629,
2003.
184.
 Schwilden H, Schuttler J:  The determination of
an effective therapeutic infusion rate for intravenous anesthetics using feedback-controlled
dosages [in German].  Anaesthesist 39:603–606, 1990.
185.
 Albrecht S, Frenkel C, Ihmsen H, Schuttler J:
 A rational approach to the control of sedation in intensive care unit patients based
on closed-loop control.  Eur J Anaesthesiol 16:678–687, 1999.