Previous Next

REFERENCES

301. Cason Ba, Gamperl AK, Slocum RE, Hickey RF: Anesthetic-induced preconditioning. Previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology 87:1182–1190, 1997.

302. Buljubasic N, Stowe DF, Marijic J, et al: Halothane reduces release of adenosine, inosine, and lactate with ischemia and reperfusion in isolated hearts. Anesth Analg 76:54–62, 1993.

303. Coetzee A, Brits W, Genade S, Lochner A: Halothane does have protective properties in the isolated ischemic rat heart. Anesth Analg 73:711–719, 1991.

304. Freedman BM, Hamm DP, Everson CT, et al: Enflurane enhances postischemic functional recovery in the isolated rat heart. Anesthesiology 62:29–33, 1985.

305. Marijic J, Stowe DF, Turner LA, et al: Differential protective effects of halothane and isoflurane against hypoxic and reoxygenation injury in the isolated guinea pig heart. Anesthesiology 73:976–983, 1990.

306. Mattheussen M, Rusy BF, Van Aken H, Flameng W: Recovery of function and adenosine triphosphate metabolism following myocardial ischemia induced in the presence of volatile anesthetics. Anesth Analg 76:69–75, 1993.

307. Belo Se, Mazer CD: Effect of halothane and isolfurane on postischemic "stunned" myocardium in the dog. Anesthesiology 73:1243–1251, 1990.

308. Tanguay M, Blaise G, Dumont L, et al: Beneficial effects of volatile anesthetics on decrease in coronary flow and myocardial contractility induced by oxygen-derived free radicals in isolated rabbit hearts. J Cardiovasc Pharmacol 18:863–870, 1991.

309. Smith G, Rogers K, Thornburn J: Halothane improves the balance of oxygen supply to demand in acute experimental myocardial ischaemia. Br J Anaesth 52:577–583, 1980.


224


310. Bertha BG, Folts JD, Nugent M, Rusy BF: Halothane, but not isoflurane or enflurane, protects against spontaneous and epinephrine-exacerbated acute thrombus formation in stenosed dog coronary arteries. Anesthesiology 71:96–102, 1989.

311. Kowalski C, Zahler S, Becker BF, et al: Halothane, isoflurane, and sevoflurane redu ce postischemic adhesion of neutrophils in the coronary system. Anesthesiology 86:188–195, 1997.

312. Inagaki N, Gonoi T, Clement JPT, et al: Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170, 1995.

313. Noma A: ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148, 1983.

314. Inoue I, Nagase H, Kishi K, Higuti T: ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247, 1991.

315. Yao Z, Gross GJ: Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 89:1769–1775, 1994.

316. Hamada K, Yamazaki J, Nagao T: Shortening of action potential duration is not prerequisite for cardiac protection by ischemic preconditioning or a KATP channel opener. J Mol Cell Cardiol 30:1369–1379, 1998.

317. Sato T, Sasaki N, Seharaseyon J, et al: Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection. Circulation 101:2418–2423, 2000.

318. Dos Santos P, Kowaltowski AJ, Laclau MN, et al: Mechanisms by which opening the mitochondrial ATP-sensitive K+ channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 283:H284–H295, 2002.

319. Dzeja PP, Holmuhamedov EL, Ozcan C, et al: Mitochondria: Gateway for cytoprotection. Circ Res 89:744–746, 2001.

320. Holmuhamedov EL, Jovanovic S, Dzeja PP, et al: Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576, 1998.

321. Holmuhamedov EL, Wang L, Terzic A: ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol 519(Pt 2):347–360, 1999.

322. Green DR, Reed JC: Mitochondria and apoptosis. Science 281:1309–1312, 1998.

323. Akao M, Ohler A, O'Rourke B, Marban E: Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res 88:1267–1275, 2001.

324. Ozcan C, Bienengraeber M, Dzeja PP, Terzic A: Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol 282:H531–H539, 2002.

325. Minners J, Lacerda L, McCarthy J, et al: Ischemic and pharmacological preconditioning in Girardi cells and C2C12 myotubes induce mitochondrial uncoupling. Circ Res 89:787–792, 2001.

326. Halestrap AP: The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta 973:355–382, 1989.

327. Garlid KD: Cation transport in mitochondria—The potassium cycle. Biochim Biophys Acta 1275:123–126, 1996.

328. Garlid KD: On the mechanism of regulation of the mitochondrial K+ /H+ exchanger. J Biol Chem 255:11273–11279, 1980.

329. Zaugg M, Lucchinetti E, Spahn DR, et al: Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Anesthesiology 97:4–14, 2002.

330. Kersten JR, Lowe D, Hettrick DA, et al: Glyburide, a KATP channel antagonist, attenuates the cardioprotective effects of isoflurane in stunned myocardium. Anesth Analg 83:27–33, 1996.

331. Nakayama M, Fujita S, Kanaya N, et al: Blockade of ATP-sensitive K+ channel abolishes the anti-ischemic effects of isoflurane in dog hearts. Acta Anaesthesiol Scand 41:531–535, 1997.

332. Ludwig LM, Gross GJ, Kersten JR, et al: Morphine enhances pharmacological preconditioning by isoflurane: Role of mitochondrial KATP channels and opioid receptors. Anesthesiology 98:705–711, 2003.

333. Piriou V, Ross S, Pigott D, et al: Beneficial effect of concomitant administration of isoflurane and nicorandil. Br J Anaesth 79:68–77, 1997.

334. Carroll R, Yellon DM: Delayed cardioprotection in a human cardiomyocyte-derived cell line: The role of adenosine, p38MAP kinase and mitochondrial KATP . Basic Res Cardiol 95:243–249, 2000.

335. Roscoe AK, Christensen JD, Lynch C 3rd: Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels. Anesthesiology 92:1692–1701, 2000.

336. Toller WG, Gross ER, Kersten JR, et al: Sarcolemmal and mitochondrial adenosine triphosphate-dependent potassium (KATP ) channels. Mechanism of desflurane-induced cardio-protection. Anesthesiology 92:1731–1739, 2000.

337. Fujimoto K, Bosnjak ZJ, Kwok WM: Isoflurane-induced facilitation of the cardiac sarcolemmal K(ATP) channel. Anesthesiology 97:57–65, 2002.

338. Kwok WM, Martinelli AT, Fujimoto K, et al: Differential modulation of the cardiac adenosine triphosphate-sensitive potassium channel by isoflurane and halothane. Anesthesiology 97:50–56, 2002.

339. Han J, Kim E, Ho WK, Earm YE: Effects of volatile anesthetic isoflurane on ATP-sensitive K+ channels in rabbit ventricular myocytes. Biochem Biophys Res Commun 229:852–856, 1996.

340. Kohro S, Hogan QH, Nakae Y, et al: Anesthetic effects on mitochondrial ATP-sensitive K channel. Anesthesiology 95:1435–1440, 2001.

341. Liu Y, Gao WD, O'Rourke B, Marban E: Priming effect of adenosine on K(ATP) currents in intact ventricular myocytes: Implications for preconditioning. Am J Physiol 273:H1637–H1643, 1997.

342. Yao Z, Mizumura T, Mei DA, Gross GJ: KATP channels and memory of ischemic preconditioning in dogs: Synergism between adenosine and KATP channels. Am J Physiol 272:H334–H342, 1997.

343. Patel HH, Ludwig LM, Fryer RM, et al: Delta opioid agonists and volatile anesthetics facilitate cardioprotection via potentiation of K(ATP) channel opening. FASEB J 16:1468–1470, 2002.

344. Daut J, Maier-Rudolph W, von Beckerath N, et al: Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1344, 1990.

345. Cason BA, Shubayev I, Hickey RF: Blockade of adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced coronary artery vasodilation. Anesthesiology 81:1245–1255, 1994.

346. Novalija E, Fujita S, Kampine JP, Stowe DF: Sevoflurane mimics ischemic preconditioning effects on coronary flow and nitric oxide release in isolated hearts. Anesthesiology 91:701–712, 1999.

347. Crystal GJ, Zhou X, Gurevicius J, et al: Direct coronary vasomotor effects of sevoflurane and desflurane in in situ canine hearts. Anesthesiology 92:1103–1113, 2000.

348. Zhou X, Abboud W, Manabat NC, et al: Isoflurane-induced dilation of porcine coronary arterioles is mediated by ATP-sensitive potassium channels. Anesthesiology 89:182–189, 1998.

349. Kersten JR, Schmeling TJ, Tessmer JP, et al: Sevoflurane selectively dilates coronary collaterals independent of KATP channels in vivo. Anesthesiology 90:246–256, 1999.

350. Kehl F, Krolikowski JG, Tessmer JP, et al: Increases in coronary collateral blood flow produced by sevoflurane are mediated by calcium-activated potassium (BKCa) channels in vivo. Anesthesiology 97:725–731, 2002.

351. Toller WG, Kersten JR, Gross ER, et al: Isoflurane preconditions myocardium against infarction via activation of inhibitory guanine (Gi) nucleotide binding proteins. Anesthesiology 92:1400–1407, 2000.
225


352. Kersten JR, Orth KG, Pagel PS, et al: Role of adenosine in isoflurane-induced cardioprotection. Anesthesiology 86:1128–1139, 1997.

353. Van Wylen DGL: Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia. Circulation 89:2283–2289, 1994.

354. Mizumura T, Nithipatikom K, Gross GJ: Bimakalim, an ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning to reduce infarct size, adenosine release, and neutrophil function in dogs. Circulation 92:1236–1245, 1995.

355. Ishizawa Y, Pidikiti R, Liebman PA, Eckenhoff RG: G protein-coupled receptors as direct targets of inhaled anesthetics. Mol Pharmacol 61:945–952, 2002.

356. Fryer RM, Patel HH, Hsu AK, Gross GJ: Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. Am J Physiol Heart Circ Physiol 281:H1184–H1192, 2001.

357. Fryer RM, Pratt PF, Hsu AK, Gross GJ: Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296:642–649, 2001.

358. Fryer RM, Schultz JE, Hsu AK, Gross GJ: Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts. Am J Physiol 276:H1229–H1235, 1999.

359. Liu H, McPherson BC, Yao Z: Preconditioning attenuates apoptosis and necrosis: Role of protein kinase C epsilon and delta isoforms. Am J Physiol Heart Circ Physiol 281:H404–H410, 2001.

360. Puceat M, Vassort G: Signalling by protein kinase C isoforms in the heart. Mol Cell Biochem 157:65–72, 1996.

361. Hemmings HC Jr, Adamo AI: Activation of endogenous protein kinase C by halothane in synaptosomes. Anesthesiology 84:652–662, 1996.

362. Hemmings HC Jr: General anesthetic effects on protein kinase C. Toxicol Lett 100–101:89–95, 1998.

363. Toller WG, Montgomery MW, Pagel PS, et al: Isoflurane-enhanced recovery of canine stunned myocardium: Role for protein kinase C? Anesthesiology 91:713–722, 1999.

364. Ismaeil MS, Tkachenko I, Hickey RF, Cason BA: Colchicine inhibits isoflurane-induced preconditioning. Anesthesiology 91:1816–1822, 1999.

365. Sato T, O'Rourke B, Marban E: Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 83:110–114, 1998.

366. Sato T, Sasaki N, O'Rourke B, Marban E: Adenosine primes the opening of mitochondrial ATP-sensitive potassium channels: A key step in ischemic preconditioning? Circulation 102:800–805, 2000.

367. Hu K, Duan D, Li GR, Nattel S: Protein kinase C activates ATP-sensitive K+ current in human and rabbit ventricular myocytes. Circ Res 78:492–498, 1996.

368. Liu Y, Gao WD, O'Rourke B, Marban E: Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine: Implications for ischemic preconditioning. Circ Res 78:443–454, 1996.

369. Ambrosio G, Zweier JL, Duilio C, et al: Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268:18532–18541, 1993.

370. Bolli R: Oxygen-derived free radicals and postischemic myocardial dysfunction ("stunned myocardium"). J Am Coll Cardiol 12:239–249, 1988.

371. Bolli R, Patel BS, Jeroudi MO, et al: Demonstration of free radical generation in "stunned" myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest 82:476–485, 1988.

372. Zweier JL, Flaherty JT, Weisfeldt ML: Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A 84:1404–1407, 1987.

373. Nakamura T, Kashimoto S, Oguchi T, Kumazawa T: Hydroxyl radical formation during inhalation anesthesia in the reperfused working rat heart. Can J Anaesth 46:470–475, 1999.

374. Glantz L, Ginosar Y, Chevion M, et al: Halothane prevents postischemic production of hydroxyl radicals in the canine heart. Anesthesiology 86:440–447, 1997.

375. Novalija E, Varadarajan SG, Camara AK, et al: Anesthetic preconditioning: Triggering role of reactive oxygen and nitrogen species in isolated hearts. Am J Physiol Heart Circ Physiol 283:H44–H52, 2002.

376. Mullenheim J, Ebel D, Frassdorf J, et al: Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology 96:934–940, 2002.

377. Tanaka K, Weihrauch D, Kehl F, et al: Mechanism of preconditioning by isoflurane in rabbits: A direct role for reactive oxygen species. Anesthesiology 97:1485–1490, 2002.

378. Tanaka M, Fujiwara H, Yamasaki K, Sasayama S: Superoxide dismutase and N-2-mercaptopropionyl glycine attenuate infarct size limitation effect of ischaemic preconditioning in the rabbit. Cardiovasc Res 28:980–986, 1994.

379. Baines CP, Goto M, Downey JM: Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29:207–216, 1997.

380. Pain T, Yang XM, Critz SD, et al: Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466, 2000.

381. Obata T, Yamanaka Y: Block of cardiac ATP-sensitive K+ channels reduces hydroxyl radicals in the rat myocardium. Arch Biochem Biophys 378:195–200, 2000.

382. Samavati L, Monick MM, Sanlioglu S, et al: Mitochondrial K(ATP) channel openers activate the ERK kinase by an oxidant-dependent mechanism. Am J Physiol Cell Physiol 283:C273–C281, 2002.

383. Forbes RA, Steenbergen C, Murphy E: Diazoxide-induced cardioprotection requires signaling through a redoxsensitive mechanism. Cir Res 88:802–809, 2001.

384. McPherson BC, Yao Z: Morphine mimics preconditioning via free radical signals and mitochondrial K(ATP) channels in myocytes. Circulation 103:290–295, 2001.

385. Paraidathathu T, de Groot H, Kehrer JP: Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Radic Biol Med 13:289–297, 1992.

386. Vanden Hoek TL, Shao Z, Li C, et al: Mitochondrial electron transport can become a significant source of oxidative injury in cardiomyocytes. J Mol Cell Cardiol 29:2441–2450, 1997.

387. Vanden Hoek TL, Becker LB, Shao Z, et al: Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273:18092–18098, 1998.

388. Becker LB, Vanden Hoek TL, Shao ZH, et al: Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:H2240–H2246, 1999.

389. Zhang DX, Chen YF, Campbell WB, et al: Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res 89:1177–1183, 2001.

390. Tanaka K, Weihrauch D, Ludwig LM, et al: Mitochondrial adenosine triphosphate-regulated potassium channel opening acts as a trigger for isolfurane-induced preconditioning by generating reactive oxygen species. Anesthesiology 98:935–943, 2003.

391. Tritto I, D'Andrea D, Eramo N, et al: Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res 80:743–748, 1997.

392. Wang XT, McCullough KD, Wang XJ, et al: Oxidative stress-induced phospholipase C-gamma 1 activation enhances cell survival. J Biol Chem 276:28364–28371, 2001.

393. Gopalakrishna R, Jaken S: Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361, 2000.

394. Nishida M, Maruyama Y, Tanaka R, et al: G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature 408:492–495, 2000.

395. Nishida M, Schey KL, Takagahara S, et al: Activation mechanism of Gi and Go by reactive oxygen species. J Biol Chem 277:9036–9042, 2002.
226


396. Maulik N, Watanabe M, Zu YL, et al: Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett 396:233–237, 1996.

397. Dabrowski A, Boguslowicz C, Dabrowska M, et al: Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells. Pancreas 21:376–384, 2000.

398. Hilfiker O, Larsen R, Sonntag H: Myocardial blood flow and oxygen consumption during halothane-nitrous oxide anaesthesia for coronary revascularization. Br J Anaesth 55:927–932, 1983.

399. Khambatta HJ, Sonntag H, Larsen R, et al: Global and regional myocardial blood flow and metabolism during equipotent halothane and isoflurane anesthesia in patients with coronary artery disease. Anesth Analg 67:936–942, 1988.

400. Sahlman L, Milocco I, Ricksten SE: Myocardial circulatory and metabolic effects of halothane when used to control intraoperative hypertension in patients with coronary artery disease. Acta Anaesthesiol Scand 36:283–288, 1992.

401. Moffitt EA, Imrie DD, Scovil JE, et al: Myocardial metabolism and haemodynamic responses with enflurane anesthesia for coronary artery surgery. Can Anaesth Soc J 31:604–610, 1984.

402. Moffitt EA, Barker RA, Glen JJ, et al: Myocardial metabolism and hemodynamic responses with isoflurane anesthesia for coronary arterial surgery. Anesth Analg 65:53–61, 1986.

403. O'Young J, Mastrocostopoulos G, Hilgenberg A, et al: Myocardial circulatory and metabolic effects of isoflurane and sufentanil during coronary artery surgery. Anesthesiology 66:653–658, 1987.

404. Sahlman L, Milocco I, Appelgren L, et al: Control of intraoperative hypertension with isoflurane in patients with coronary artery disease: Effects on regional myocardial blood flow and metabolism. Anesth Analg 68:105–111, 1989.

405. Tarnow J, Markschies-Hornung A, Schulte-Sasse U: Isoflurane improves the tolerance to pacing-induced myocardial ischemia. Anesthesiology 64:147–156, 1986.

406. Diana P, Tullock WC, Gorcsan J III, et al: Myocardial ischemia: A comparison between isoflurane and enflurane in coronary artery bypass patients. Anesth Analg 77:221–226, 1993.

407. Inoue K, Reichelt W, El-Banayosy A, et al: Does isoflurane lead to a higher incidence of myocardial infarction and perioperative death than enflurane in coronary artery surgery? A clinical study of 1178 patients. Anesth Analg 71:469–474, 1990.

408. Knight AA, Hollenberg M, London MJ, et al: Perioperative myocardial ischemia: Importance of the preoperative ischemia pattern. Anesthesiology 68:681–688, 1988.

409. Pulley DD, Kirvassilis GV, Kelermenos N, et al: Regional and global myocardial circulatory and metabolic effects of isoflurane and halothane in patients with steal-prone coronary anatomy. Anesthesiology 75:756–766, 1991.

410. Slogoff S, Keats AS: Randomized trial of primary anesthetic agents on outcome of coronary artery bypass operations. Anesthesiology 70:179–188, 1989.

411. Tuman KJ, McCarthy RJ, Spiess BD, et al: Does choice of anesthetic agent significantly affect outcome after coronary artery surgery? Anesthesiology 70:189–198, 1989.

412. Wallace A, Layug B, Tateo I, et al: Prophylactic atenolol reduces postoperative myocardial ischemia. Anesthesiology 88:7–17, 1998.

413. Mangano DT, Layug EL, Wallace A, Tateo I: Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. Multicenter Study of Perioperative Ischemia Group. N Engl J Med 335:1713–1720, 1996.

414. Wilkinson PL, Hamilton WK, Moyers JR, et al: Halothane and morphine-nitrous oxide anesthesia in patients undergoing coronary artery bypass operation: Patterns of intraoperative ischemia. J Thorac Cardiovasc Surg 82:372–382, 1981.

415. Moffitt EA, Sethna DH, Bussell JA, et al: Myocardial metabolism and hemodynamic responses to halothane or morphine anesthesia for coronary artery surgery. Anesth Analg 61:979–985, 1982.

416. Helman JD, Leung JM, Bellows WH, et al: The risk of myocardial ischemia in patients receiving desflurane versus sufentanil anesthesia for coronary artery bypass graft surgery. The S.P.I Research Group. Anesthesiology 77:47–62, 1992.

417. Buffington CW, Davis KB, Gillispie S, Pettinger M: The prevelance of steal-prone coronary anatomy in patients with coronary artery disease: An analysis of the Coronary Artery Surgery Study Registry. Anesthesiology 69:721–727, 1988.

418. Ebert TJ, Kharasch ED, Rooke GA, et al: Myocardial ischemia and adverse cardiac outcomes in cardiac patients undergoing noncardiac surgery with sevoflurane and isoflurane. Sevoflurane Ischemia Study Group. Anesth Analg 85:993–999, 1997.

419. Heikkila H, Jalonen J, Arola M, Laaksonen V: Haemodynamics and myocardial oxygenation during anaesthesia for coronary artery surgery: Comparison between enflurane and high-dose fentanyl anaesthesia. Acta Anaesthesiol Scand 29:457–464, 1985.

420. Leung JM, Goehner P, O'Kelly BF, et al: Isoflurane anesthesia and myocardial ischemia: Comparative risk versus sufentanil anesthesia in patients undergoing coronary artery bypass graft surgery. The SPI (Study of Perioperative Ischemia) Research Group. Anesthesiology 74:838–847, 1991.

421. Slogoff S, Keats AS, Dear WE, et al: Steal-prone coronary anatomy and myocardial ischemia associated with four primary anesthetic agents in humans. Anesth Analg 72:22–27, 1991.

422. Hanouz JL, Yvon A, Massetti M, et al: Mechanisms of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology 97:33–41, 2002.

423. Carroll R, Gant VA, Yellon DM: Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51:691–700, 2001.

424. Belhomme D, Peynet J, Louzy M, et al: Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 100:II340–II344, 1999.

425. Penta de Peppo A, Polisca P, Tomai F, et al: Recovery of LV contractility in man is enhanced by preischemic administration of enflurane. Ann Thorac Surg 68:112–118, 1999.

426. De Hert SG, ten Broecke PW, Mertens E, et al: Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 97:42–49, 2002.

427. Warltier DC, Pagel PS, Kersten JR: Approaches to the prevention of perioperative myocardial ischemia. Anesthesiology 92:253–259, 2000.

428. Biscoe TJ, Millar RA: The effects of cyclopropane, halothane and ether on central baroreceptor pathways. J Physiol (Lond) 184:535–559, 1966.

429. Cox RH, Bagshaw RJ: Influence of anesthesia on the response to carotid hypotension in dogs. Am J Physiol 237:H424–H432, 1979.

430. Epstein RA, Wang H-H, Bartelstone HJ: The effects of halothane on circulatory reflexes of the dog. Anesthesiology 29:867–876, 1968.

431. Seagard JL, Elegbe EO, Hopp FA, et al: Effects of isoflurane on baroreceptor reflex. Anesthesiology 59:511–520, 1983.

432. Sellgren J, Biber B, Henriksson BA, et al: The effects of propofol, methohexitone and isoflurane on the baroreceptor reflex in the cat. Acta Anaesthesiol Scand 36:784–790, 1992.

433. Skovsted P, Price HL: The effects of ethrane on arterial pressure, preganglionic sympathetic activity, and barostatic reflexes. Anesthesiology 36:257–262, 1972.

434. Skovsted P, Price ML, Price HL: The effects of halothane on arterial pressure, preganglionic sympathetic activity and barostatic reflexes. Anesthesiology 31:507–514, 1969.

435. Skovsted P, Sapthavichaikul S: The effects of isoflurane on arterial pressure, pulse rate, autonomic nervous activity, and barostatic reflexes. Can Anaesth Soc J 24:304–314, 1977.

436. Seagard JL, Hopp FA, Donegan JH, et al: Halothane and the carotid sinus reflex: Evidence for multiple sites of action. Anesthesiology 57:191–202, 1982.
227


437. Seagard JL, Hopp FA, Bosnjak ZJ, et al: Sympathetic efferent nerve activity in conscious and isoflurane-anesthetized dogs. Anesthesiology 61:266–270, 1984.

438. Seagard JL, Hopp FA, Bosnjak ZJ, et al: Extent and mechanism of halothane sensitization of the carotid sinus baroreceptors. Anesthesiology 58:432–437, 1983.

439. Ebert TJ, Seagard JL, Hopp FA JR: Autonomic nervous system: Measurement and response under anesthesia. In Yaksh TL, Lynch C III, Zapol WM, et al (eds): Anesthesia: Biologic Foundations. Philadelphia, Lippincott-Raven, 1997, pp 1233–1255.

440. Alper MH, Fleisch JH, Flacke W: The effects of halothane on the responses of cardiac sympathetic ganglia to various stimulants. Anesthesiology 31:429–436, 1969.

441. Christ D: Effects of halothane on ganglionic discharges. J Pharmacol Exp Ther 200:336–342, 1977.

442. Bosnjak ZJ, Seagard JL, Wu A, Kampine JP: The effects of halothane on sympathetic ganglionic transmission. Anesthesiology 57:473–479, 1982.

443. Deegan R, He HB, Wood AJJ, Wood M: Effects of anesthesia on norepinephrine kinetics: Comparison of propofol and halothane anesthesia in dogs. Anesthesiology 75:481–488, 1991.

444. Deegan R, He HB, Wood AJJ, Wood M: Effect of enflurane and isoflurane on norepinephrine kinetics: A new approach to assessment of sympathetic function during anesthesia. Anesth Analg 77:49–54, 1993.

445. Rorie DK, Tyce GM, Mackenzie RA: Evidence that halothane inhibits norepinephrine release from sympathetic nerve endings in dog saphenous vein by stimulation of presynaptic inhibitory muscarinic receptors. Anesth Analg 63:1059–1064, 1984.

446. Cristoforo MF, Brody MJ: The effects of halothane and cyclopropane on skeletal muscle vessels and baroreceptor reflexes. Anesthesiology 29:36–43, 1968.

447. Price HL, Price ML, Morse HT: Effects of cyclopropane, halothane and procaine on the vasomotor "center" of the dog. Anesthesiology 26:55–60, 1965.

448. Price HL, Linde HW, Morse HT: Central nervous actions of halothane affecting the systemic circulation. Anesthesiology 24:770–778, 1963.

449. Morton M, Duke PC, Ong B: Baroreflex control of heart rate in man awake and during enflurane and enflurane-nitrous oxide anesthesia. Anesthesiology 52:221–223, 1980.

450. Kotrly KJ, Ebert TJ, Vucins EJ, et al: Effects of fentanyl-diazepam-nitrous oxide anaesthesia on arterial baroreflex control of heart rate in man. Br J Anaesth 58:406–414, 1986.

Previous Next