|
|
REFERENCES
301.
Cason Ba, Gamperl AK, Slocum RE, Hickey RF: Anesthetic-induced
preconditioning. Previous administration of isoflurane decreases myocardial infarct
size in rabbits. Anesthesiology 87:1182–1190, 1997.
302.
Buljubasic N, Stowe DF, Marijic J, et al: Halothane
reduces release of adenosine, inosine, and lactate with ischemia and reperfusion
in isolated hearts. Anesth Analg 76:54–62, 1993.
303.
Coetzee A, Brits W, Genade S, Lochner A: Halothane
does have protective properties in the isolated ischemic rat heart. Anesth Analg
73:711–719, 1991.
304.
Freedman BM, Hamm DP, Everson CT, et al: Enflurane
enhances postischemic functional recovery in the isolated rat heart. Anesthesiology
62:29–33, 1985.
305.
Marijic J, Stowe DF, Turner LA, et al: Differential
protective effects of halothane and isoflurane against hypoxic and reoxygenation
injury in the isolated guinea pig heart. Anesthesiology 73:976–983, 1990.
306.
Mattheussen M, Rusy BF, Van Aken H, Flameng W:
Recovery of function and adenosine triphosphate metabolism following myocardial
ischemia induced in the presence of volatile anesthetics. Anesth Analg 76:69–75,
1993.
307.
Belo Se, Mazer CD: Effect of halothane and isolfurane
on postischemic "stunned" myocardium in the dog. Anesthesiology 73:1243–1251,
1990.
308.
Tanguay M, Blaise G, Dumont L, et al: Beneficial
effects of volatile anesthetics on decrease in coronary flow and myocardial contractility
induced by oxygen-derived free radicals in isolated rabbit hearts. J Cardiovasc
Pharmacol 18:863–870, 1991.
309.
Smith G, Rogers K, Thornburn J: Halothane improves
the balance of oxygen supply to demand in acute experimental myocardial ischaemia.
Br J Anaesth 52:577–583, 1980.
310.
Bertha BG, Folts JD, Nugent M, Rusy BF: Halothane,
but not isoflurane or enflurane, protects against spontaneous and epinephrine-exacerbated
acute thrombus formation in stenosed dog coronary arteries. Anesthesiology 71:96–102,
1989.
311.
Kowalski C, Zahler S, Becker BF, et al: Halothane,
isoflurane, and sevoflurane redu ce postischemic adhesion of neutrophils in the coronary
system. Anesthesiology 86:188–195, 1997.
312.
Inagaki N, Gonoi T, Clement JPT, et al: Reconstitution
of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170,
1995.
313.
Noma A: ATP-regulated K+
channels
in cardiac muscle. Nature 305:147–148, 1983.
314.
Inoue I, Nagase H, Kishi K, Higuti T: ATP-sensitive
K+
channel in the mitochondrial inner membrane. Nature 352:244–247,
1991.
315.
Yao Z, Gross GJ: Effects of the KATP
channel opener bimakalim on coronary blood flow, monophasic action potential duration,
and infarct size in dogs. Circulation 89:1769–1775, 1994.
316.
Hamada K, Yamazaki J, Nagao T: Shortening of
action potential duration is not prerequisite for cardiac protection by ischemic
preconditioning or a KATP
channel opener. J Mol Cell Cardiol 30:1369–1379,
1998.
317.
Sato T, Sasaki N, Seharaseyon J, et al: Selective
pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels
in ischemic cardioprotection. Circulation 101:2418–2423, 2000.
318.
Dos Santos P, Kowaltowski AJ, Laclau MN, et al:
Mechanisms by which opening the mitochondrial ATP-sensitive K+
channel
protects the ischemic heart. Am J Physiol Heart Circ Physiol 283:H284–H295,
2002.
319.
Dzeja PP, Holmuhamedov EL, Ozcan C, et al: Mitochondria:
Gateway for cytoprotection. Circ Res 89:744–746, 2001.
320.
Holmuhamedov EL, Jovanovic S, Dzeja PP, et al:
Mitochondrial ATP-sensitive K+
channels modulate cardiac mitochondrial
function. Am J Physiol 275:H1567–H1576, 1998.
321.
Holmuhamedov EL, Wang L, Terzic A: ATP-sensitive
K+
channel openers prevent Ca2+
overload in rat cardiac mitochondria.
J Physiol 519(Pt 2):347–360, 1999.
322.
Green DR, Reed JC: Mitochondria and apoptosis.
Science 281:1309–1312, 1998.
323.
Akao M, Ohler A, O'Rourke B, Marban E: Mitochondrial
ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in
cardiac cells. Circ Res 88:1267–1275, 2001.
324.
Ozcan C, Bienengraeber M, Dzeja PP, Terzic A:
Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress
at reoxygenation. Am J Physiol Heart Circ Physiol 282:H531–H539, 2002.
325.
Minners J, Lacerda L, McCarthy J, et al: Ischemic
and pharmacological preconditioning in Girardi cells and C2C12 myotubes induce mitochondrial
uncoupling. Circ Res 89:787–792, 2001.
326.
Halestrap AP: The regulation of the matrix volume
of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial
metabolism. Biochim Biophys Acta 973:355–382, 1989.
327.
Garlid KD: Cation transport in mitochondria—The
potassium cycle. Biochim Biophys Acta 1275:123–126, 1996.
328.
Garlid KD: On the mechanism of regulation of
the mitochondrial K+
/H+
exchanger. J Biol Chem 255:11273–11279,
1980.
329.
Zaugg M, Lucchinetti E, Spahn DR, et al: Volatile
anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial
K(ATP) channels via multiple signaling pathways. Anesthesiology 97:4–14, 2002.
330.
Kersten JR, Lowe D, Hettrick DA, et al: Glyburide,
a KATP
channel antagonist, attenuates the cardioprotective effects of
isoflurane in stunned myocardium. Anesth Analg 83:27–33, 1996.
331.
Nakayama M, Fujita S, Kanaya N, et al: Blockade
of ATP-sensitive K+
channel abolishes the anti-ischemic effects of isoflurane
in dog hearts. Acta Anaesthesiol Scand 41:531–535, 1997.
332.
Ludwig LM, Gross GJ, Kersten JR, et al: Morphine
enhances pharmacological preconditioning by isoflurane: Role of mitochondrial KATP
channels and opioid receptors. Anesthesiology 98:705–711, 2003.
333.
Piriou V, Ross S, Pigott D, et al: Beneficial
effect of concomitant administration of isoflurane and nicorandil. Br J Anaesth
79:68–77, 1997.
334.
Carroll R, Yellon DM: Delayed cardioprotection
in a human cardiomyocyte-derived cell line: The role of adenosine, p38MAP kinase
and mitochondrial KATP
. Basic Res Cardiol 95:243–249, 2000.
335.
Roscoe AK, Christensen JD, Lynch C 3rd: Isoflurane,
but not halothane, induces protection of human myocardium via adenosine A1 receptors
and adenosine triphosphate-sensitive potassium channels. Anesthesiology 92:1692–1701,
2000.
336.
Toller WG, Gross ER, Kersten JR, et al: Sarcolemmal
and mitochondrial adenosine triphosphate-dependent potassium (KATP
) channels.
Mechanism of desflurane-induced cardio-protection. Anesthesiology 92:1731–1739,
2000.
337.
Fujimoto K, Bosnjak ZJ, Kwok WM: Isoflurane-induced
facilitation of the cardiac sarcolemmal K(ATP) channel. Anesthesiology 97:57–65,
2002.
338.
Kwok WM, Martinelli AT, Fujimoto K, et al: Differential
modulation of the cardiac adenosine triphosphate-sensitive potassium channel by isoflurane
and halothane. Anesthesiology 97:50–56, 2002.
339.
Han J, Kim E, Ho WK, Earm YE: Effects of volatile
anesthetic isoflurane on ATP-sensitive K+
channels in rabbit ventricular
myocytes. Biochem Biophys Res Commun 229:852–856, 1996.
340.
Kohro S, Hogan QH, Nakae Y, et al: Anesthetic
effects on mitochondrial ATP-sensitive K channel. Anesthesiology 95:1435–1440,
2001.
341.
Liu Y, Gao WD, O'Rourke B, Marban E: Priming
effect of adenosine on K(ATP) currents in intact ventricular myocytes: Implications
for preconditioning. Am J Physiol 273:H1637–H1643, 1997.
342.
Yao Z, Mizumura T, Mei DA, Gross GJ: KATP channels
and memory of ischemic preconditioning in dogs: Synergism between adenosine and
KATP channels. Am J Physiol 272:H334–H342, 1997.
343.
Patel HH, Ludwig LM, Fryer RM, et al: Delta opioid
agonists and volatile anesthetics facilitate cardioprotection via potentiation of
K(ATP) channel opening. FASEB J 16:1468–1470, 2002.
344.
Daut J, Maier-Rudolph W, von Beckerath N, et al:
Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels.
Science 247:1341–1344, 1990.
345.
Cason BA, Shubayev I, Hickey RF: Blockade of
adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced
coronary artery vasodilation. Anesthesiology 81:1245–1255, 1994.
346.
Novalija E, Fujita S, Kampine JP, Stowe DF: Sevoflurane
mimics ischemic preconditioning effects on coronary flow and nitric oxide release
in isolated hearts. Anesthesiology 91:701–712, 1999.
347.
Crystal GJ, Zhou X, Gurevicius J, et al: Direct
coronary vasomotor effects of sevoflurane and desflurane in in situ canine hearts.
Anesthesiology 92:1103–1113, 2000.
348.
Zhou X, Abboud W, Manabat NC, et al: Isoflurane-induced
dilation of porcine coronary arterioles is mediated by ATP-sensitive potassium channels.
Anesthesiology 89:182–189, 1998.
349.
Kersten JR, Schmeling TJ, Tessmer JP, et al:
Sevoflurane selectively dilates coronary collaterals independent of KATP
channels in vivo. Anesthesiology 90:246–256, 1999.
350.
Kehl F, Krolikowski JG, Tessmer JP, et al: Increases
in coronary collateral blood flow produced by sevoflurane are mediated by calcium-activated
potassium (BKCa) channels in vivo. Anesthesiology 97:725–731, 2002.
351.
Toller WG, Kersten JR, Gross ER, et al: Isoflurane
preconditions myocardium against infarction via activation of inhibitory guanine
(Gi) nucleotide binding proteins. Anesthesiology 92:1400–1407, 2000.
352.
Kersten JR, Orth KG, Pagel PS, et al: Role of
adenosine in isoflurane-induced cardioprotection. Anesthesiology 86:1128–1139,
1997.
353.
Van Wylen DGL: Effect of ischemic preconditioning
on interstitial purine metabolite and lactate accumulation during myocardial ischemia.
Circulation 89:2283–2289, 1994.
354.
Mizumura T, Nithipatikom K, Gross GJ: Bimakalim,
an ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning
to reduce infarct size, adenosine release, and neutrophil function in dogs. Circulation
92:1236–1245, 1995.
355.
Ishizawa Y, Pidikiti R, Liebman PA, Eckenhoff
RG: G protein-coupled receptors as direct targets of inhaled anesthetics. Mol Pharmacol
61:945–952, 2002.
356.
Fryer RM, Patel HH, Hsu AK, Gross GJ: Stress-activated
protein kinase phosphorylation during cardioprotection in the ischemic myocardium.
Am J Physiol Heart Circ Physiol 281:H1184–H1192, 2001.
357.
Fryer RM, Pratt PF, Hsu AK, Gross GJ: Differential
activation of extracellular signal regulated kinase isoforms in preconditioning and
opioid-induced cardioprotection. J Pharmacol Exp Ther 296:642–649, 2001.
358.
Fryer RM, Schultz JE, Hsu AK, Gross GJ: Importance
of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat
hearts. Am J Physiol 276:H1229–H1235, 1999.
359.
Liu H, McPherson BC, Yao Z: Preconditioning attenuates
apoptosis and necrosis: Role of protein kinase C epsilon and delta isoforms. Am
J Physiol Heart Circ Physiol 281:H404–H410, 2001.
360.
Puceat M, Vassort G: Signalling by protein kinase
C isoforms in the heart. Mol Cell Biochem 157:65–72, 1996.
361.
Hemmings HC Jr, Adamo AI: Activation of endogenous
protein kinase C by halothane in synaptosomes. Anesthesiology 84:652–662,
1996.
362.
Hemmings HC Jr: General anesthetic effects on
protein kinase C. Toxicol Lett 100–101:89–95, 1998.
363.
Toller WG, Montgomery MW, Pagel PS, et al: Isoflurane-enhanced
recovery of canine stunned myocardium: Role for protein kinase C? Anesthesiology
91:713–722, 1999.
364.
Ismaeil MS, Tkachenko I, Hickey RF, Cason BA:
Colchicine inhibits isoflurane-induced preconditioning. Anesthesiology 91:1816–1822,
1999.
365.
Sato T, O'Rourke B, Marban E: Modulation of mitochondrial
ATP-dependent K+
channels by protein kinase C. Circ Res 83:110–114,
1998.
366.
Sato T, Sasaki N, O'Rourke B, Marban E: Adenosine
primes the opening of mitochondrial ATP-sensitive potassium channels: A key step
in ischemic preconditioning? Circulation 102:800–805, 2000.
367.
Hu K, Duan D, Li GR, Nattel S: Protein kinase
C activates ATP-sensitive K+
current in human and rabbit ventricular myocytes.
Circ Res 78:492–498, 1996.
368.
Liu Y, Gao WD, O'Rourke B, Marban E: Synergistic
modulation of ATP-sensitive K+
currents by protein kinase C and adenosine:
Implications for ischemic preconditioning. Circ Res 78:443–454, 1996.
369.
Ambrosio G, Zweier JL, Duilio C, et al: Evidence
that mitochondrial respiration is a source of potentially toxic oxygen free radicals
in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268:18532–18541,
1993.
370.
Bolli R: Oxygen-derived free radicals and postischemic
myocardial dysfunction ("stunned myocardium"). J Am Coll Cardiol 12:239–249,
1988.
371.
Bolli R, Patel BS, Jeroudi MO, et al: Demonstration
of free radical generation in "stunned" myocardium of intact dogs with the use of
the spin trap alpha-phenyl N-tert-butyl nitrone.
J Clin Invest 82:476–485, 1988.
372.
Zweier JL, Flaherty JT, Weisfeldt ML: Direct
measurement of free radical generation following reperfusion of ischemic myocardium.
Proc Natl Acad Sci U S A 84:1404–1407, 1987.
373.
Nakamura T, Kashimoto S, Oguchi T, Kumazawa T:
Hydroxyl radical formation during inhalation anesthesia in the reperfused working
rat heart. Can J Anaesth 46:470–475, 1999.
374.
Glantz L, Ginosar Y, Chevion M, et al: Halothane
prevents postischemic production of hydroxyl radicals in the canine heart. Anesthesiology
86:440–447, 1997.
375.
Novalija E, Varadarajan SG, Camara AK, et al:
Anesthetic preconditioning: Triggering role of reactive oxygen and nitrogen species
in isolated hearts. Am J Physiol Heart Circ Physiol 283:H44–H52, 2002.
376.
Mullenheim J, Ebel D, Frassdorf J, et al: Isoflurane
preconditions myocardium against infarction via release of free radicals. Anesthesiology
96:934–940, 2002.
377.
Tanaka K, Weihrauch D, Kehl F, et al: Mechanism
of preconditioning by isoflurane in rabbits: A direct role for reactive oxygen species.
Anesthesiology 97:1485–1490, 2002.
378.
Tanaka M, Fujiwara H, Yamasaki K, Sasayama S:
Superoxide dismutase and N-2-mercaptopropionyl glycine
attenuate infarct size limitation effect of ischaemic preconditioning in the rabbit.
Cardiovasc Res 28:980–986, 1994.
379.
Baines CP, Goto M, Downey JM: Oxygen radicals
released during ischemic preconditioning contribute to cardioprotection in the rabbit
myocardium. J Mol Cell Cardiol 29:207–216, 1997.
380.
Pain T, Yang XM, Critz SD, et al: Opening of
mitochondrial K(ATP) channels triggers the preconditioned state by generating free
radicals. Circ Res 87:460–466, 2000.
381.
Obata T, Yamanaka Y: Block of cardiac ATP-sensitive
K+
channels reduces hydroxyl radicals in the rat myocardium. Arch Biochem
Biophys 378:195–200, 2000.
382.
Samavati L, Monick MM, Sanlioglu S, et al: Mitochondrial
K(ATP) channel openers activate the ERK kinase by an oxidant-dependent mechanism.
Am J Physiol Cell Physiol 283:C273–C281, 2002.
383.
Forbes RA, Steenbergen C, Murphy E: Diazoxide-induced
cardioprotection requires signaling through a redoxsensitive mechanism. Cir Res
88:802–809, 2001.
384.
McPherson BC, Yao Z: Morphine mimics preconditioning
via free radical signals and mitochondrial K(ATP) channels in myocytes. Circulation
103:290–295, 2001.
385.
Paraidathathu T, de Groot H, Kehrer JP: Production
of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free
Radic Biol Med 13:289–297, 1992.
386.
Vanden Hoek TL, Shao Z, Li C, et al: Mitochondrial
electron transport can become a significant source of oxidative injury in cardiomyocytes.
J Mol Cell Cardiol 29:2441–2450, 1997.
387.
Vanden Hoek TL, Becker LB, Shao Z, et al: Reactive
oxygen species released from mitochondria during brief hypoxia induce preconditioning
in cardiomyocytes. J Biol Chem 273:18092–18098, 1998.
388.
Becker LB, Vanden Hoek TL, Shao ZH, et al: Generation
of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol
277:H2240–H2246, 1999.
389.
Zhang DX, Chen YF, Campbell WB, et al: Characteristics
and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive
potassium channels. Circ Res 89:1177–1183, 2001.
390.
Tanaka K, Weihrauch D, Ludwig LM, et al: Mitochondrial
adenosine triphosphate-regulated potassium channel opening acts as a trigger for
isolfurane-induced preconditioning by generating reactive oxygen species. Anesthesiology
98:935–943, 2003.
391.
Tritto I, D'Andrea D, Eramo N, et al: Oxygen
radicals can induce preconditioning in rabbit hearts. Circ Res 80:743–748,
1997.
392.
Wang XT, McCullough KD, Wang XJ, et al: Oxidative
stress-induced phospholipase C-gamma 1 activation enhances cell survival. J Biol
Chem 276:28364–28371, 2001.
393.
Gopalakrishna R, Jaken S: Protein kinase C signaling
and oxidative stress. Free Radic Biol Med 28:1349–1361, 2000.
394.
Nishida M, Maruyama Y, Tanaka R, et al: G alpha(i)
and G alpha(o) are target proteins of reactive oxygen species. Nature 408:492–495,
2000.
395.
Nishida M, Schey KL, Takagahara S, et al: Activation
mechanism of Gi and Go by reactive oxygen species. J Biol Chem 277:9036–9042,
2002.
396.
Maulik N, Watanabe M, Zu YL, et al: Ischemic
preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat
hearts. FEBS Lett 396:233–237, 1996.
397.
Dabrowski A, Boguslowicz C, Dabrowska M, et al:
Reactive oxygen species activate mitogen-activated protein kinases in pancreatic
acinar cells. Pancreas 21:376–384, 2000.
398.
Hilfiker O, Larsen R, Sonntag H: Myocardial blood
flow and oxygen consumption during halothane-nitrous oxide anaesthesia for coronary
revascularization. Br J Anaesth 55:927–932, 1983.
399.
Khambatta HJ, Sonntag H, Larsen R, et al: Global
and regional myocardial blood flow and metabolism during equipotent halothane and
isoflurane anesthesia in patients with coronary artery disease. Anesth Analg 67:936–942,
1988.
400.
Sahlman L, Milocco I, Ricksten SE: Myocardial
circulatory and metabolic effects of halothane when used to control intraoperative
hypertension in patients with coronary artery disease. Acta Anaesthesiol Scand 36:283–288,
1992.
401.
Moffitt EA, Imrie DD, Scovil JE, et al: Myocardial
metabolism and haemodynamic responses with enflurane anesthesia for coronary artery
surgery. Can Anaesth Soc J 31:604–610, 1984.
402.
Moffitt EA, Barker RA, Glen JJ, et al: Myocardial
metabolism and hemodynamic responses with isoflurane anesthesia for coronary arterial
surgery. Anesth Analg 65:53–61, 1986.
403.
O'Young J, Mastrocostopoulos G, Hilgenberg A,
et al: Myocardial circulatory and metabolic effects of isoflurane and sufentanil
during coronary artery surgery. Anesthesiology 66:653–658, 1987.
404.
Sahlman L, Milocco I, Appelgren L, et al: Control
of intraoperative hypertension with isoflurane in patients with coronary artery disease:
Effects on regional myocardial blood flow and metabolism. Anesth Analg 68:105–111,
1989.
405.
Tarnow J, Markschies-Hornung A, Schulte-Sasse
U: Isoflurane improves the tolerance to pacing-induced myocardial ischemia. Anesthesiology
64:147–156, 1986.
406.
Diana P, Tullock WC, Gorcsan J III, et al: Myocardial
ischemia: A comparison between isoflurane and enflurane in coronary artery bypass
patients. Anesth Analg 77:221–226, 1993.
407.
Inoue K, Reichelt W, El-Banayosy A, et al: Does
isoflurane lead to a higher incidence of myocardial infarction and perioperative
death than enflurane in coronary artery surgery? A clinical study of 1178 patients.
Anesth Analg 71:469–474, 1990.
408.
Knight AA, Hollenberg M, London MJ, et al: Perioperative
myocardial ischemia: Importance of the preoperative ischemia pattern. Anesthesiology
68:681–688, 1988.
409.
Pulley DD, Kirvassilis GV, Kelermenos N, et al:
Regional and global myocardial circulatory and metabolic effects of isoflurane and
halothane in patients with steal-prone coronary anatomy. Anesthesiology 75:756–766,
1991.
410.
Slogoff S, Keats AS: Randomized trial of primary
anesthetic agents on outcome of coronary artery bypass operations. Anesthesiology
70:179–188, 1989.
411.
Tuman KJ, McCarthy RJ, Spiess BD, et al: Does
choice of anesthetic agent significantly affect outcome after coronary artery surgery?
Anesthesiology 70:189–198, 1989.
412.
Wallace A, Layug B, Tateo I, et al: Prophylactic
atenolol reduces postoperative myocardial ischemia. Anesthesiology 88:7–17,
1998.
413.
Mangano DT, Layug EL, Wallace A, Tateo I: Effect
of atenolol on mortality and cardiovascular morbidity after noncardiac surgery.
Multicenter Study of Perioperative Ischemia Group. N Engl J Med 335:1713–1720,
1996.
414.
Wilkinson PL, Hamilton WK, Moyers JR, et al:
Halothane and morphine-nitrous oxide anesthesia in patients undergoing coronary artery
bypass operation: Patterns of intraoperative ischemia. J Thorac Cardiovasc Surg
82:372–382, 1981.
415.
Moffitt EA, Sethna DH, Bussell JA, et al: Myocardial
metabolism and hemodynamic responses to halothane or morphine anesthesia for coronary
artery surgery. Anesth Analg 61:979–985, 1982.
416.
Helman JD, Leung JM, Bellows WH, et al: The risk
of myocardial ischemia in patients receiving desflurane versus sufentanil anesthesia
for coronary artery bypass graft surgery. The S.P.I Research Group. Anesthesiology
77:47–62, 1992.
417.
Buffington CW, Davis KB, Gillispie S, Pettinger
M: The prevelance of steal-prone coronary anatomy in patients with coronary artery
disease: An analysis of the Coronary Artery Surgery Study Registry. Anesthesiology
69:721–727, 1988.
418.
Ebert TJ, Kharasch ED, Rooke GA, et al: Myocardial
ischemia and adverse cardiac outcomes in cardiac patients undergoing noncardiac surgery
with sevoflurane and isoflurane. Sevoflurane Ischemia Study Group. Anesth Analg
85:993–999, 1997.
419.
Heikkila H, Jalonen J, Arola M, Laaksonen V:
Haemodynamics and myocardial oxygenation during anaesthesia for coronary artery surgery:
Comparison between enflurane and high-dose fentanyl anaesthesia. Acta Anaesthesiol
Scand 29:457–464, 1985.
420.
Leung JM, Goehner P, O'Kelly BF, et al: Isoflurane
anesthesia and myocardial ischemia: Comparative risk versus sufentanil anesthesia
in patients undergoing coronary artery bypass graft surgery. The SPI (Study of Perioperative
Ischemia) Research Group. Anesthesiology 74:838–847, 1991.
421.
Slogoff S, Keats AS, Dear WE, et al: Steal-prone
coronary anatomy and myocardial ischemia associated with four primary anesthetic
agents in humans. Anesth Analg 72:22–27, 1991.
422.
Hanouz JL, Yvon A, Massetti M, et al: Mechanisms
of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology
97:33–41, 2002.
423.
Carroll R, Gant VA, Yellon DM: Mitochondrial
K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving
free radical generation. Cardiovasc Res 51:691–700, 2001.
424.
Belhomme D, Peynet J, Louzy M, et al: Evidence
for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation
100:II340–II344, 1999.
425.
Penta de Peppo A, Polisca P, Tomai F, et al:
Recovery of LV contractility in man is enhanced by preischemic administration of
enflurane. Ann Thorac Surg 68:112–118, 1999.
426.
De Hert SG, ten Broecke PW, Mertens E, et al:
Sevoflurane but not propofol preserves myocardial function in coronary surgery patients.
Anesthesiology 97:42–49, 2002.
427.
Warltier DC, Pagel PS, Kersten JR: Approaches
to the prevention of perioperative myocardial ischemia. Anesthesiology 92:253–259,
2000.
428.
Biscoe TJ, Millar RA: The effects of cyclopropane,
halothane and ether on central baroreceptor pathways. J Physiol (Lond) 184:535–559,
1966.
429.
Cox RH, Bagshaw RJ: Influence of anesthesia on
the response to carotid hypotension in dogs. Am J Physiol 237:H424–H432, 1979.
430.
Epstein RA, Wang H-H, Bartelstone HJ: The effects
of halothane on circulatory reflexes of the dog. Anesthesiology 29:867–876,
1968.
431.
Seagard JL, Elegbe EO, Hopp FA, et al: Effects
of isoflurane on baroreceptor reflex. Anesthesiology 59:511–520, 1983.
432.
Sellgren J, Biber B, Henriksson BA, et al: The
effects of propofol, methohexitone and isoflurane on the baroreceptor reflex in the
cat. Acta Anaesthesiol Scand 36:784–790, 1992.
433.
Skovsted P, Price HL: The effects of ethrane
on arterial pressure, preganglionic sympathetic activity, and barostatic reflexes.
Anesthesiology 36:257–262, 1972.
434.
Skovsted P, Price ML, Price HL: The effects of
halothane on arterial pressure, preganglionic sympathetic activity and barostatic
reflexes. Anesthesiology 31:507–514, 1969.
435.
Skovsted P, Sapthavichaikul S: The effects of
isoflurane on arterial pressure, pulse rate, autonomic nervous activity, and barostatic
reflexes. Can Anaesth Soc J 24:304–314, 1977.
436.
Seagard JL, Hopp FA, Donegan JH, et al: Halothane
and the carotid sinus reflex: Evidence for multiple sites of action. Anesthesiology
57:191–202, 1982.
437.
Seagard JL, Hopp FA, Bosnjak ZJ, et al: Sympathetic
efferent nerve activity in conscious and isoflurane-anesthetized dogs. Anesthesiology
61:266–270, 1984.
438.
Seagard JL, Hopp FA, Bosnjak ZJ, et al: Extent
and mechanism of halothane sensitization of the carotid sinus baroreceptors. Anesthesiology
58:432–437, 1983.
439.
Ebert TJ, Seagard JL, Hopp FA JR: Autonomic nervous
system: Measurement and response under anesthesia. In
Yaksh TL, Lynch C III, Zapol WM, et al (eds): Anesthesia: Biologic Foundations.
Philadelphia, Lippincott-Raven, 1997, pp 1233–1255.
440.
Alper MH, Fleisch JH, Flacke W: The effects of
halothane on the responses of cardiac sympathetic ganglia to various stimulants.
Anesthesiology 31:429–436, 1969.
441.
Christ D: Effects of halothane on ganglionic
discharges. J Pharmacol Exp Ther 200:336–342, 1977.
442.
Bosnjak ZJ, Seagard JL, Wu A, Kampine JP: The
effects of halothane on sympathetic ganglionic transmission. Anesthesiology 57:473–479,
1982.
443.
Deegan R, He HB, Wood AJJ, Wood M: Effects of
anesthesia on norepinephrine kinetics: Comparison of propofol and halothane anesthesia
in dogs. Anesthesiology 75:481–488, 1991.
444.
Deegan R, He HB, Wood AJJ, Wood M: Effect of
enflurane and isoflurane on norepinephrine kinetics: A new approach to assessment
of sympathetic function during anesthesia. Anesth Analg 77:49–54, 1993.
445.
Rorie DK, Tyce GM, Mackenzie RA: Evidence that
halothane inhibits norepinephrine release from sympathetic nerve endings in dog saphenous
vein by stimulation of presynaptic inhibitory muscarinic receptors. Anesth Analg
63:1059–1064, 1984.
446.
Cristoforo MF, Brody MJ: The effects of halothane
and cyclopropane on skeletal muscle vessels and baroreceptor reflexes. Anesthesiology
29:36–43, 1968.
447.
Price HL, Price ML, Morse HT: Effects of cyclopropane,
halothane and procaine on the vasomotor "center" of the dog. Anesthesiology 26:55–60,
1965.
448.
Price HL, Linde HW, Morse HT: Central nervous
actions of halothane affecting the systemic circulation. Anesthesiology 24:770–778,
1963.
449.
Morton M, Duke PC, Ong B: Baroreflex control
of heart rate in man awake and during enflurane and enflurane-nitrous oxide anesthesia.
Anesthesiology 52:221–223, 1980.
450.
Kotrly KJ, Ebert TJ, Vucins EJ, et al: Effects
of fentanyl-diazepam-nitrous oxide anaesthesia on arterial baroreflex control of
heart rate in man. Br J Anaesth 58:406–414, 1986.