REFERENCES
1.
Friis-Hansen B: Body composition during growth.
In vivo measurements and biochemical data correlated to differential anatomical
growth. Pediatrics 47:169–181, 1971.
2.
Lugo G, Cassady G: Intrauterine growth retardation.
Clinicopathologic findings in 233 consecutive infants. Am J Obstet Gynecol 109:615–622,
1971.
3.
Dees E, Baldwin HS: New frontiers in molecular
pediatric cardiology. Curr Opin Pediatr 14:627–633, 2002.
4.
Bingol N, Fuchs M, Diaz V, et al: Teratogenicity
of cocaine in humans. J Pediatr 110:93–96, 1987.
5.
Keegan CE, Hammer GD: Recent insights into organogenesis
of the adrenal cortex. Trends Endocrinol Metab 13:200–208, 2002.
6.
Chinoy MR: Lung growth and development. Front
Biosci 8:D392–D415, 2003.
7.
Rudolph AM: The changes in the circulation after
birth. Their importance in congenital heart disease. Circulation 41:343–359,
1970.
8.
Friedman WF, Hirschklau MJ, Printz MP, et al: Pharmacologic
closure of patent ductus arteriosus in the premature infant. N Engl J Med 295:526–529,
1976.
9.
Romero T, Covell J, Friedman WF: A comparison of
pressure-volume relations of the fetal, newborn, and adult heart. Am J Physiol 222:1285–1290,
1972.
10.
Kirkpatrick SE, Pitlick PT, Naliboff J, et al:
Frank-Starling relationship as an important determinant of fetal cardiac output.
Am J Physiol 231:495–500, 1976.
11.
Hoerter J, Mazet F, Vassort G: Perinatal growth
of the rabbit cardiac cell: Possible implications for the mechanism of relaxation.
J Mol Cell Cardiol 13:725–740, 1981.
12.
Murat I, Hoerter J, Ventura-Clapier R: Developmental
changes in effects of halothane and isoflurane on contractile properties of rabbit
cardiac skinned fibers. Anesthesiology 73:137–145, 1990.
13.
Davies G, Reid L: Growth of the alveoli and pulmonary
arteries in childhood. Thorax 25:669–681, 1970.
14.
Anthonisen NR, Danson J, Robertson PC, et al:
Airway closure as a function of age. Respir Physiol 8:58–65, 1969.
15.
Cross KW, Tizard JPM, Trythall DAH: The gaseous
metabolism of the newborn infant. Acta Paediatr Scand 46:265–285, 1957.
16.
Keens TG, Bryan AC, Levison H, et al: Developmental
pattern of muscle fiber types in human ventilatory muscles. J Appl Physiol 44:909–913,
1978.
17.
Negus VE: The Comparative Anatomy and Physiology
of the Larynx. New York, Grune & Stratton, 1949.
18.
Eckenhoff JE: Some anatomic considerations of
the infant larynx influencing endotracheal anesthesia. Anesthesiology 12:401–410,
1951.
19.
Miller MJ, Carlo WA, Strohl KP, et al: Effect
of maturation on oral breathing in sleeping premature infants. J Pediatr 109:515–519,
1986.
20.
deAlmeida VL, Alvaro RA, Haider Z, et al: The
effect of nasal occlusion on the initiation of oral breathing in preterm infants.
Pediatr Pulmonol 18:374–378, 1994.
21.
Leake RD, Trygstad CW: Glomerular filtration rate
during the period of adaptation to extrauterine life. Pediatr Res 11:959–962,
1977.
22.
Jose PA, Fildes RD, Gomez RA, et al: Neonatal
renal function and physiology. Curr Opin Pediatr 6:172–177, 1994.
23.
van den Anker JN: Pharmacokinetics and renal function
in preterm infants. Acta Paediatr 85:1393–1399, 1996.
24.
Drukker A, Guignard JP: Renal aspects of the term
and preterm infant: A selective update. Curr Opin Pediatr 14:175–182, 2002.
25.
Alcorn J, McNamara PJ: Ontogeny of hepatic and
renal systemic clearance pathways in infants: Part I. Clin Pharmacokinet 41:959–998,
2002.
26.
Reed MD, Besunder JB: Developmental pharmacology:
Ontogenic basis of drug disposition. Pediatr Clin North Am 36:1053–1074,
1989.
27.
Reed MD: Developmental pharmacology: Relationship
to drug use. DICP 23(7–8 Suppl):S21–S6, 1989.
28.
Besunder JB, Reed MD, Blumer JL: Principles of
drug biodisposition in the neonate. A critical evaluation of the pharmacokinetic-pharmacodynamic
interface (Part II). Clin Pharmacokinet 14:261–286, 1988.
29.
Shimada T, Yamazaki H, Mimura M, et al: Characterization
of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals
in human fetal liver and adult lungs. Drug Metab Dispos 24:515–522, 1996.
30.
Treluyer JM, Jacqz-Aigrain E, Alvarez F, et al:
Expression of CYP2D6 in developing human liver. Eur J Biochem 202:583–588,
1991.
31.
Leeder JS, Kearns GL: Pharmacogenetics in pediatrics.
Implications for practice. Pediatr Clin North Am 44:55–77, 1997.
32.
Ward RM, Mirkin BL: Perinatal/neonatal pharmacology.
In Brody TM, Larner J, Minneman KP (eds): Human
Pharmacology: Molecular to Clinical, 3rd ed. St Louis, Mosby-Year Book, 1998, pp
873–883.
33.
Gow PJ, Ghabrial H, Smallwood RA, et al: Neonatal
hepatic drug elimination. Pharmacol Toxicol 88:3–15, 2001.
34.
Hollenberg PF, Brody TM: Absorption, distribution,
metabolism, and elimination. In Brody TM, Larner
J, Minneman KP (eds): Human Pharmacology Molecular to Clinical, 3rd ed. St Louis,
Mosby-Year Book, 1998, pp 35–46.
35.
de Wildt SN, Kearns GL, Leeder JS, et al: Glucuronidation
in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 36:439–452,
1999.
36.
Ginsberg G, Hattis D, Sonawane B, et al: Evaluation
of child/adult pharmacokinetic differences from a database derived from the therapeutic
drug literature. Toxicol Sci 66:185–200, 2002.
37.
Ehrnebo M, Agurell S, Jalling B, et al: Age differences
in drug binding by plasma proteins: Studies in human foetuses, neonates, and adults.
Eur J Clin Pharmacol 3:189–193, 1971.
38.
Wood M: Plasma drug binding: Implications for
anesthesiologists. Anesth Analg 65:786–804, 1986.
39.
Orenstein SR, Orenstein DM: Gastroesophageal reflux
and respiratory disease in children. J Pediatr 112:847–858, 1988.
40.
Himms-Hagen J: Cellular thermogenesis. Annu Rev
Physiol 38:315–351, 1976.
41.
Bissonnette B: Temperature monitoring in pediatric
anesthesia. Int Anesthesiol Clin 30:63–76, 1992.
42.
Plattner O, Semsroth M, Sessler DI, et al: Lack
of nonshivering thermogenesis in infants anesthetized with fentanyl and propofol.
Anesthesiology 86:772–777, 1997.
43.
Dicker A, Ohlson KB, Johnson L, et al: Halothane
selectively inhibits nonshivering thermogenesis. Possible implications for thermoregulation
during anesthesia of infants. Anesthesiology 82:491–501, 1995.
44.
Pierro A: Metabolic response to neonatal surgery.
Curr Opin Pediatr 11:230–236, 1999.
45.
Lerman J, Sikich N, Kleinman S, et al: The pharmacology
of sevoflurane in infants and children. Anesthesiology 80:814–824, 1994.
46.
Fisher DM, Zwass MS: MAC of desflurane in 60%
nitrous oxide in infants and children. Anesthesiology 76:354–356, 1992.
47.
Katoh T, Ikeda K: Minimum alveolar concentration
of sevoflurane in children. Br J Anaesth 68:139–141, 1992.
48.
Taylor RH, Lerman J: Induction, maintenance and
recovery characteristics of desflurane in infants and children. Can J Anaesth 39:6–13,
1992.
49.
Nicodemus HF, Nassiri-Rahimi C, Bachman L, et al:
Median effective doses (ED50
) of halothane in adults and children. Anesthesiology
31:344–348, 1969.
50.
Lerman J, Robinson S, Willis MM, et al: Anesthetic
requirements for halothane in young children 0–1 month and 1–6 months
of age. Anesthesiology 59:421–424, 1983.
51.
Taylor RH, Lerman J: Minimum alveolar concentration
of desflurane and hemodynamic responses in neonates, infants, and children. Anesthesiology
75:975–979, 1991.
52.
LeDez KM, Lerman J: The minimum alveolar concentration
(MAC) of isoflurane in preterm neonates. Anesthesiology 67:301–307, 1987.
53.
Gregory GA, Eger EI II, Munson ES, et al: The
relationship between age and halothane requirements in man. Anesthesiology 30:488–491,
1969.
54.
Katoh T, Ikeda K: The minimum alveolar concentration
(MAC) of sevoflurane in humans. Anesthesiology 66:301–303, 1987.
55.
Yakaitis RW, Blitt CD, Angiulo JP: End-tidal halothane
concentration for endotracheal intubation. Anesthesiology 47:386–388, 1977.
56.
Friesen RH, Lichtor JL: Cardiovascular depression
during halothane anesthesia in infants: Study of three induction techniques. Anesth
Analg 61:42–45, 1982.
57.
Lerman J, Schmitt-Bantel BI, Gregory GA, et al:
Effect of age on the solubility of volatile anesthetics in human tissues. Anesthesiology
65:307–311, 1986.
58.
Lerman J, Gregory GA, Willis MM, et al: Age and
solubility of volatile anesthetics in blood. Anesthesiology 61:139–143, 1984.
59.
Ariffin SA, Whyte JA, Malins AF, et al: Comparison
of induction and recovery between sevoflurane and halothane supplementation of anaesthesia
in children undergoing outpatient dental extractions. Br J Anaesth 78:157–159,
1997.
60.
Lerman J, Davis PJ, Welborn LG, et al: Induction,
recovery, and safety characteristics of sevoflurane in children undergoing ambulatory
surgery. A comparison with halothane. Anesthesiology 84:1332–1340, 1996.
61.
Rieger A, Schroter G, Philippi W, et al: A comparison
of sevoflurane with halothane in outpatient adenotomy in children with mild upper
respiratory tract infections. J Clin Anesth 8:188–197, 1996.
62.
Sigston PE, Jenkins AM, Jackson EA, et al: Rapid
inhalation induction in children: 8% sevoflurane compared with 5% halothane. Br
J Anaesth 78:362–365, 1997.
63.
Naito Y, Tamai S, Shingu K, et al: Comparison
between sevoflurane and halothane for paediatric ambulatory anaesthesia. Br J Anaesth
67:387–389, 1991.
64.
Piat V, Dubois MC, Johanet S, et al: Induction
and recovery characteristics and hemodynamic responses to sevoflurane and halothane
in children. Anesth Analg 79:840–844, 1994.
65.
Sarner JB, Levine M, Davis PJ, et al: Clinical
characteristics of sevoflurane in children. A comparison with halothane. Anesthesiology
82:38–46, 1995.
66.
Hallen J, Rawal N, Gupta A: Postoperative recovery
following outpatient pediatric myringotomy: A comparison between sevoflurane and
halothane. J Clin Anesth 13:161–166, 2001.
67.
Cravero J, Surgenor S, Whalen K: Emergence agitation
in paediatric patients after sevoflurane anaesthesia and no surgery: A comparison
with halothane. Paediatr Anaesth 10:419–424, 2000.
68.
Lapin SL, Auden SM, Goldsmith LJ, et al: Effects
of sevoflurane anaesthesia on recovery in children: A comparison with halothane.
Paediatr Anaesth 9:299–304, 1999.
69.
Beskow A, Westrin P: Sevoflurane causes more postoperative
agitation in children than does halothane. Acta Anaesthesiol Scand 43:536–541,
1999.
70.
Davis PJ, Greenberg JA, Gendelman M, et al: Recovery
characteristics of sevoflurane and halothane in preschool-aged children undergoing
bilateral myringotomy and pressure equalization tube insertion. Anesth Analg 88:34–38,
1999.
71.
Johannesson GP, Floren M, Lindahl SG: Sevolfurane
for ENT-surgery in children. A comparison with halothane. Acta Anaesthesiol Scand
39:546–550, 1995.
72.
Epstein RH, Mendel HG, Guarnieri KM, et al: Sevoflurane
versus halothane for general anesthesia in pediatric patients: A comparative study
of vital signs, induction, and emergence. J Clin Anesth 7:237–244, 1995.
73.
Kataria B, Epstein R, Bailey A, et al: A comparison
of sevoflurane to halothane in paediatric surgical patients: Results of a multicentre
international study. Paediatr Anaesth 6:283–292, 1996.
74.
Meretoja OA, Taivainen T, Raiha L, et al: Sevoflurane-nitrous
oxide or halothane-nitrous oxide for paediatric bronchoscopy and gastroscopy. Br
J Anaesth 76:767–771, 1996.
75.
Taivainen T, Tiainen P, Meretoja OA, et al: Comparison
of the effects of sevoflurane and halothane on the quality of anaesthesia and serum
glutathione transferase alpha and fluoride in paediatric patients. Br J Anaesth
73:590–595, 1994.
76.
Black A, Sury MR, Hemington L, et al: A comparison
of the induction characteristics of sevoflurane and halothane in children. Anaesthesia
51:539–542, 1996.
77.
Baum VC, Yemen TA, Baum LD: Immediate 8% sevoflurane
induction in children: A comparison with incremental sevoflurane and incremental
halothane. Anesth Analg 85:313–316, 1997.
78.
Yamakage M, Tamiya K, Horikawa D, et al: Effects
of halothane and sevoflurane on the paediatric respiratory pattern. Paediatr Anaesth
4:53–56, 1994.
79.
Brown K, Aun C, Stocks J, et al: A comparison
of the respiratory effects of sevoflurane and halothane in infants and young children.
Anesthesiology 89:86–92, 1998.
80.
Morray JP, Geiduschek JM, Ramamoorthy C, et al:
Anesthesia-related cardiac arrest in children: Initial findings of the Pediatric
Perioperative Cardiac Arrest (POCA) Registry. Anesthesiology 93:6–14, 2000.
81.
Kern C, Erb T, Frei FJ: Haemodynamic responses
to sevoflurane compared with halothane during inhalational induction in children.
Paediatr Anaesth 7:439–444, 1997.
82.
Holzman RS, van der Velde ME, Kaus SJ, et al:
Sevoflurane depresses myocardial contractility less than halothane during induction
of anesthesia in children. Anesthesiology 85:1260–1267, 1996.
83.
Wodey E, Pladys P, Copin C, et al: Comparative
hemodynamic depression of sevoflurane versus halothane in infants: An echocardiographic
study. Anesthesiology 87:795–800, 1997.
84.
Wodey E, Copin C, Pladys P, et al: Comparative
hemodynamic effects of sevoflurane and halothane at tele-expiratory concentration
in intubation of infants [in French]. Ann Fr Anesth Reanim 17:108–112, 1998.
85.
Greenspun JC, Hannallah RS, Welborn LG, et al:
Comparison of sevoflurane and halothane anesthesia in children undergoing outpatient
ear, nose, and throat surgery. J Clin Anesth 7:398–402, 1995.
86.
Sury MR, Black A, Hemington L, et al: A comparison
of the recovery characteristics of sevoflurane and halothane in children. Anaesthesia
51:543–546, 1996.
87.
Fang ZX, Kandel L, Laster MJ, et al: Factors affecting
production of compound A from the interaction of sevoflurane with Baralyme and soda
lime. Anesth Analg 82:775–781, 1996.
88.
Frink EJ Jr, Green WB Jr, Brown EA, et al: Compound
A concentrations during sevoflurane anesthesia in children. Anesthesiology 84:566–571,
1996.
89.
Jin L, Baillie TA, Davis MR, et al: Nephrotoxicity
of sevoflurane compound A [fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether]
in rats: Evidence for glutathione and cysteine conjugate formation and the role
of renal cysteine conjugate beta-lyase. Biochem Biophys Res Commun 210:498–506,
1995.
90.
Frink EJ Jr, Isner RJ, Malan TP Jr, et al: Sevoflurane
degradation product concentrations with soda lime during prolonged anesthesia. J
Clin Anesth 6:239–242, 1994.
91.
Gonsowski CT, Laster MJ, Eger EI 2d, et al: Toxicity
of compound A in rats. Effect of a 3-hour administration. Anesthesiology 80:556–565,
1994.
92.
Frink EJ Jr, Malan TP, Morgan SE, et al: Quantification
of the degradation products of sevoflurane in two CO2
absorbents during
low-flow anesthesia in surgical patients. Anesthesiology 77:1064–1069, 1992.
93.
Ray DC, Bomont R, Mizushima A, et al: Effect of
sevoflurane anaesthesia on plasma concentrations of glutathione S-transferase.
Br J Anaesth 77:404–407, 1996.
94.
Bito H, Ikeda K: Renal and hepatic function in
surgical patients after low-flow sevoflurane or isoflurane anesthesia. Anesth Analg
82:173–176, 1996.
95.
Kharasch ED, Thorning D, Garton K, et al: Role
of renal cysteine conjugate beta-lyase in the mechanism of compound A nephrotoxicity
in rats. Anesthesiology 86:160–171, 1997.
96.
Bito H, Ikeda K: Closed-circuit anesthesia with
sevoflurane in humans. Effects on renal and hepatic function and concentrations
of breakdown products with soda lime in the circuit. Anesthesiology 80:71–76,
1994.
97.
Ultane Sevoflurane. 2002. Chicago, Abbott Laboratories.
2002.
98.
Kharasch ED, Powers KM, Artru AA: Comparison of
Amsorb, soda lime, and Baralyme degradation of volatile anesthetics and formation
of carbon monoxide and compound A in swine in vivo. Anesthesiology 96:173–182,
2002.
99.
Gentz BA, Malan TP Jr: Renal toxicity with sevoflurane:
A storm in a teacup? Drugs 61:2155–2162, 2001.
100.
Bouche MP, Versichelen LF, Struys MM, et al:
No compound a formation with Superia during minimal-flow sevoflurane anesthesia:
A comparison with Sofnolime. Anesth Analg 95:1680–1685, 2002.
101.
Knolle E, Heinze G, Gilly H: Small carbon monoxide
formation in absorbents does not correlate with small carbon dioxide absorption.
Anesth Analg 95:650–655, 2002.
102.
Welborn LG, Hannallah RS, Norden JM, et al: Comparison
of emergence and recovery characteristics of sevoflurane, desflurane, and halothane
in pediatric ambulatory patients. Anesth Analg 83:917–920, 1996.
103.
Aono J, Ueda W, Mamiya K, et al: Greater incidence
of delirium during recovery from sevoflurane anesthesia in preschool boys. Anesthesiology
87:1298–1300, 1997.
104.
Przybylo HJ, Martini DR, Mazurek AJ, et al: Assessing
behavior in children emerging from anaesthesia: Can we apply psychiatric diagnostic
techniques? Paediatr Anaesth 13:609–616, 2003.
105.
Finkel JC, Cohen IT, Hannallah RS, et al: The
effect of intranasal fentanyl on the emergence characteristics after sevoflurane
anesthesia in children undergoing surgery for bilateral myringotomy tube placement.
Anesth Analg 92:1164–1168, 2001.
106.
Kulka PJ, Bressem M, Tryba M: Clonidine prevents
sevoflurane-induced agitation in children. Anesth Analg 93:335–358, 2001.
107.
Adachi M, Ikemoto Y, Kubo K, et al: Seizure-like
movements during induction of anaesthesia with sevoflurane. Br J Anaesth 68:214–215,
1992.
108.
Holzki J, Kretz FJ: Changing aspects of sevoflurane
in paediatric anaesthesia: 1975–99. Paediatr Anaesth 9:283–286, 1999.
109.
Constant I, Dubois MC, Piat V, et al: Changes
in electroencephalogram and autonomic cardiovascular activity during induction of
anesthesia with sevoflurane compared with halothane in children. Anesthesiology
91:1604–1615, 1999.
110.
Smiley RM: An overview of induction and emergence
characteristics of desflurane in pediatric, adult, and geriatric patients. Anesth
Analg 75(Suppl):S38–S44, 1992.
111.
Zwass MS, Fisher DM, Welborn LG, et al: Induction
and maintenance characteristics of anesthesia with desflurane and nitrous oxide in
infants and children. Anesthesiology 76:373–378, 1992.
112.
Fisher DM, Robinson S, Brett CM, et al: Comparison
of enflurane, halothane, and isoflurane for diagnostic and therapeutic procedures
in children with malignancies. Anesthesiology 63:647–650, 1985.
113.
McAteer PM, Carter JA, Cooper GM, et al: Comparison
of isoflurane and halothane in outpatient paediatric dental anaesthesia. Br J Anaesth
58:390–393, 1986.
114.
Kenna JG, Neuberger J, Mieli-Vergani G, et al:
Halothane hepatitis in children. Br Med J (Clin Res Ed) 294:1209–1211, 1987.
115.
Brown BR Jr, Gandolfi AJ: Adverse effects of
volatile anesthetics. Br J Anaesth 59:14–23, 1987.
116.
Ogawa M, Doi K, Mitsufuji T, et al: Drug induced
hepatitis following sevoflurane anesthesia in a child. Masui 40:1542–1545,
1991.
117.
Watanabe K, Hatakenaka S, Ikemune K, et al: A
case of suspected liver dysfunction induced by sevoflurane anesthesia. Masui 42:902–905,
1993.
118.
Martin JL, Plevak DJ, Flannery KD, et al: Hepatotoxicity
after desflurane anesthesia. Anesthesiology 83:1125–1129, 1995.
119.
Rolf N, Coté CJ: Persistent cardiac arrhythmias
in pediatric patients: Effects of age, expired carbon dioxide values, depth of anesthesia,
and airway management. Anesth Analg 73:720–724, 1991.
120.
Karl HW, Swedlow DB, Lee KW, et al: Epinephrine-halothane
interactions in children. Anesthesiology 58:142–145, 1983.
121.
Brandom BW, Brandom RB, Cook DR: Uptake and distribution
of halothane in infants: In vivo measurements and computer simulations. Anesth
Analg 62:404–410, 1983.
122.
Wolf WJ, Neal MB, Peterson MD: The hemodynamic
and cardiovascular effects of isoflurane and halothane anesthesia in children. Anesthesiology
64:328–333, 1986.
123.
Murray D, Vandewalker G, Matherne GP, et al:
Pulsed Doppler and two-dimensional echocardiography: Comparison of halothane and
isoflurane on cardiac function in infants and small children. Anesthesiology 67:211–217,
1987.
124.
Todd MM, Drummond JC: A comparison of the cerebrovascular
and metabolic effects of halothane and isoflurane in the cat. Anesthesiology 60:276–282,
1984.
125.
Tanaka S, Tsuchida H, Nakabayashi K, et al: The
effects of sevoflurane, isoflurane, halothane, and enflurane on hemodynamic responses
during an inhaled induction of anesthesia via a mask in humans. Anesth Analg 82:821–826,
1996.
126.
Fang ZX, Eger EI 2d, Laster MJ, et al: Carbon
monoxide production from degradation of desflurane, enflurane, isoflurane, halothane,
and sevoflurane by soda lime and Baralyme. Anesth Analg 80:1187–1193, 1995.
127.
Baxter PJ, Kharasch ED: Rehydration of desiccated
Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine.
Anesthesiology 86:1061–1065, 1997.
128.
Higuchi H, Adachi Y, Arimura S, et al: The carbon
dioxide absorption capacity of Amsorb is half that of soda lime. Anesth Analg 93:221–225,
2001.
129.
Bjorkman S, Gabrielsson J, Quaynor H, et al:
Pharmacokinetics of i.v. and rectal methohexitone in children. Br J Anaesth 59:1541–1547,
1987.
130.
Liu LMP, Goudsouzian NG, Liu P: Rectal methohexital
premedication in children: A dose comparison study. Anesthesiology 53:343–345,
1980.
131.
Daniels AL, Coté CJ, Polaner DM: Continuous
oxygen saturation monitoring following rectal methohexitone induction in paediatric
patients. Can J Anaesth 39:27–30, 1992.
132.
Rockoff MA, Goudsouzian NG: Seizures induced
by methohexital. Anesthesiology 54:333–335, 1981.
133.
Coté CJ, Goudsouzian NG, Liu LM, et al:
The dose response of intravenous thiopental for the induction of general anesthesia
in unpremedicated children. Anesthesiology 55:703–705, 1981.
134.
Brett CM, Fisher DM: Thiopental dose-response
relations in unpremedicated infants, children, and adults. Anesth Analg 66:1024–1027,
1987.
135.
Westrin P: The induction dose of propofol in
infants 1–6 months of age and in children 10–16 years of age. Anesthesiology
74:455–458, 1991.
136.
Hannallah RS, Baker SB, Casey W, et al: Propofol:
Effective dose and induction characteristics in unpremedicated children. Anesthesiology
74:217–219, 1991.
137.
Aun CS, Short SM, Leung DH, et al: Induction
dose-response of propofol in unpremedicated children. Br J Anaesth 68:64–67,
1992.
138.
Murat I, Billard V, Vernois J, et al: Pharmacokinetics
of propofol after a single dose in children aged 1–3 years with minor burns.
Comparison of three data analysis approaches. Anesthesiology 84:526–532,
1996.
139.
Cameron E, Johnston G, Crofts S, et al: The minimum
effective dose of lignocaine to prevent pain due to propofol in children. Anaesthesia
47:604–606, 1992.
140.
Vangerven M, Van Hemelrijck J, Wouters P, et al:
Light anaesthesia with propofol for paediatric MRI. Anaesthesia 47:706–707,
1992.
141.
Short SM, Aun CS: Haemodynamic effects of propofol
in children. Anaesthesia 46:783–785, 1991.
142.
Watcha MF, Simeon RM, White PF, et al: Effect
of propofol on the incidence of postoperative vomiting after strabismus surgery in
pediatric outpatients. Anesthesiology 75:204–209, 1991.
143.
Hannallah RS, Britton JT, Schafer PG, et al:
Propofol anaesthesia in paediatric ambulatory patients: A comparison with thiopentone
and halothane. Can J Anaesth 41:12–18, 1994.
144.
Cioaca R, Canavea I: Oral transmucosal ketamine:
An effective premedication in children. Paediatr Anaesth 6:361–365, 1996.
145.
Warner DL, Cabaret J, Velling D: Ketamine plus
midazolam, a most effective paediatric oral premedicant. Paediatr Anaesth 5:293–295,
1995.
146.
Malinovsky JM, Servin F, Cozian A, et al: Ketamine
and norketamine plasma concentrations after i.v., nasal and rectal administration
in children. Br J Anaesth 77:203–207, 1996.
147.
Weksler N, Ovadia L, Muati G, et al: Nasal ketamine
for paediatric premedication. Can J Anaesth 40:119–121, 1993.
148.
Carson IW, Moore J, Balmer JP, et al: Laryngeal
competence with ketamine and other drugs. Anesthesiology 38:128–133, 1973.
149.
De Negri P, Ivani G, Visconti C, et al: How to
prolong postoperative analgesia after caudal anaesthesia with ropivacaine in children:
S-ketamine versus clonidine. Paediatr Anaesth 11:679–683, 2001.
150.
Koinig H, Marhofer P, Krenn CG, et al: Analgesic
effects of caudal and intramuscular S(+)-ketamine in children. Anesthesiology 93:976–980,
2000.