Previous Next



REFERENCES

1. Friis-Hansen B: Body composition during growth. In vivo measurements and biochemical data correlated to differential anatomical growth. Pediatrics 47:169–181, 1971.

2. Lugo G, Cassady G: Intrauterine growth retardation. Clinicopathologic findings in 233 consecutive infants. Am J Obstet Gynecol 109:615–622, 1971.

3. Dees E, Baldwin HS: New frontiers in molecular pediatric cardiology. Curr Opin Pediatr 14:627–633, 2002.

4. Bingol N, Fuchs M, Diaz V, et al: Teratogenicity of cocaine in humans. J Pediatr 110:93–96, 1987.

5. Keegan CE, Hammer GD: Recent insights into organogenesis of the adrenal cortex. Trends Endocrinol Metab 13:200–208, 2002.

6. Chinoy MR: Lung growth and development. Front Biosci 8:D392–D415, 2003.


2400


7. Rudolph AM: The changes in the circulation after birth. Their importance in congenital heart disease. Circulation 41:343–359, 1970.

8. Friedman WF, Hirschklau MJ, Printz MP, et al: Pharmacologic closure of patent ductus arteriosus in the premature infant. N Engl J Med 295:526–529, 1976.

9. Romero T, Covell J, Friedman WF: A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am J Physiol 222:1285–1290, 1972.

10. Kirkpatrick SE, Pitlick PT, Naliboff J, et al: Frank-Starling relationship as an important determinant of fetal cardiac output. Am J Physiol 231:495–500, 1976.

11. Hoerter J, Mazet F, Vassort G: Perinatal growth of the rabbit cardiac cell: Possible implications for the mechanism of relaxation. J Mol Cell Cardiol 13:725–740, 1981.

12. Murat I, Hoerter J, Ventura-Clapier R: Developmental changes in effects of halothane and isoflurane on contractile properties of rabbit cardiac skinned fibers. Anesthesiology 73:137–145, 1990.

13. Davies G, Reid L: Growth of the alveoli and pulmonary arteries in childhood. Thorax 25:669–681, 1970.

14. Anthonisen NR, Danson J, Robertson PC, et al: Airway closure as a function of age. Respir Physiol 8:58–65, 1969.

15. Cross KW, Tizard JPM, Trythall DAH: The gaseous metabolism of the newborn infant. Acta Paediatr Scand 46:265–285, 1957.

16. Keens TG, Bryan AC, Levison H, et al: Developmental pattern of muscle fiber types in human ventilatory muscles. J Appl Physiol 44:909–913, 1978.

17. Negus VE: The Comparative Anatomy and Physiology of the Larynx. New York, Grune & Stratton, 1949.

18. Eckenhoff JE: Some anatomic considerations of the infant larynx influencing endotracheal anesthesia. Anesthesiology 12:401–410, 1951.

19. Miller MJ, Carlo WA, Strohl KP, et al: Effect of maturation on oral breathing in sleeping premature infants. J Pediatr 109:515–519, 1986.

20. deAlmeida VL, Alvaro RA, Haider Z, et al: The effect of nasal occlusion on the initiation of oral breathing in preterm infants. Pediatr Pulmonol 18:374–378, 1994.

21. Leake RD, Trygstad CW: Glomerular filtration rate during the period of adaptation to extrauterine life. Pediatr Res 11:959–962, 1977.

22. Jose PA, Fildes RD, Gomez RA, et al: Neonatal renal function and physiology. Curr Opin Pediatr 6:172–177, 1994.

23. van den Anker JN: Pharmacokinetics and renal function in preterm infants. Acta Paediatr 85:1393–1399, 1996.

24. Drukker A, Guignard JP: Renal aspects of the term and preterm infant: A selective update. Curr Opin Pediatr 14:175–182, 2002.

25. Alcorn J, McNamara PJ: Ontogeny of hepatic and renal systemic clearance pathways in infants: Part I. Clin Pharmacokinet 41:959–998, 2002.

26. Reed MD, Besunder JB: Developmental pharmacology: Ontogenic basis of drug disposition. Pediatr Clin North Am 36:1053–1074, 1989.

27. Reed MD: Developmental pharmacology: Relationship to drug use. DICP 23(7–8 Suppl):S21–S6, 1989.

28. Besunder JB, Reed MD, Blumer JL: Principles of drug biodisposition in the neonate. A critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part II). Clin Pharmacokinet 14:261–286, 1988.

29. Shimada T, Yamazaki H, Mimura M, et al: Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 24:515–522, 1996.

30. Treluyer JM, Jacqz-Aigrain E, Alvarez F, et al: Expression of CYP2D6 in developing human liver. Eur J Biochem 202:583–588, 1991.

31. Leeder JS, Kearns GL: Pharmacogenetics in pediatrics. Implications for practice. Pediatr Clin North Am 44:55–77, 1997.

32. Ward RM, Mirkin BL: Perinatal/neonatal pharmacology. In Brody TM, Larner J, Minneman KP (eds): Human Pharmacology: Molecular to Clinical, 3rd ed. St Louis, Mosby-Year Book, 1998, pp 873–883.

33. Gow PJ, Ghabrial H, Smallwood RA, et al: Neonatal hepatic drug elimination. Pharmacol Toxicol 88:3–15, 2001.

34. Hollenberg PF, Brody TM: Absorption, distribution, metabolism, and elimination. In Brody TM, Larner J, Minneman KP (eds): Human Pharmacology Molecular to Clinical, 3rd ed. St Louis, Mosby-Year Book, 1998, pp 35–46.

35. de Wildt SN, Kearns GL, Leeder JS, et al: Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 36:439–452, 1999.

36. Ginsberg G, Hattis D, Sonawane B, et al: Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci 66:185–200, 2002.

37. Ehrnebo M, Agurell S, Jalling B, et al: Age differences in drug binding by plasma proteins: Studies in human foetuses, neonates, and adults. Eur J Clin Pharmacol 3:189–193, 1971.

38. Wood M: Plasma drug binding: Implications for anesthesiologists. Anesth Analg 65:786–804, 1986.

39. Orenstein SR, Orenstein DM: Gastroesophageal reflux and respiratory disease in children. J Pediatr 112:847–858, 1988.

40. Himms-Hagen J: Cellular thermogenesis. Annu Rev Physiol 38:315–351, 1976.

41. Bissonnette B: Temperature monitoring in pediatric anesthesia. Int Anesthesiol Clin 30:63–76, 1992.

42. Plattner O, Semsroth M, Sessler DI, et al: Lack of nonshivering thermogenesis in infants anesthetized with fentanyl and propofol. Anesthesiology 86:772–777, 1997.

43. Dicker A, Ohlson KB, Johnson L, et al: Halothane selectively inhibits nonshivering thermogenesis. Possible implications for thermoregulation during anesthesia of infants. Anesthesiology 82:491–501, 1995.

44. Pierro A: Metabolic response to neonatal surgery. Curr Opin Pediatr 11:230–236, 1999.

45. Lerman J, Sikich N, Kleinman S, et al: The pharmacology of sevoflurane in infants and children. Anesthesiology 80:814–824, 1994.

46. Fisher DM, Zwass MS: MAC of desflurane in 60% nitrous oxide in infants and children. Anesthesiology 76:354–356, 1992.

47. Katoh T, Ikeda K: Minimum alveolar concentration of sevoflurane in children. Br J Anaesth 68:139–141, 1992.

48. Taylor RH, Lerman J: Induction, maintenance and recovery characteristics of desflurane in infants and children. Can J Anaesth 39:6–13, 1992.

49. Nicodemus HF, Nassiri-Rahimi C, Bachman L, et al: Median effective doses (ED50 ) of halothane in adults and children. Anesthesiology 31:344–348, 1969.

50. Lerman J, Robinson S, Willis MM, et al: Anesthetic requirements for halothane in young children 0–1 month and 1–6 months of age. Anesthesiology 59:421–424, 1983.

51. Taylor RH, Lerman J: Minimum alveolar concentration of desflurane and hemodynamic responses in neonates, infants, and children. Anesthesiology 75:975–979, 1991.

52. LeDez KM, Lerman J: The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology 67:301–307, 1987.

53. Gregory GA, Eger EI II, Munson ES, et al: The relationship between age and halothane requirements in man. Anesthesiology 30:488–491, 1969.

54. Katoh T, Ikeda K: The minimum alveolar concentration (MAC) of sevoflurane in humans. Anesthesiology 66:301–303, 1987.

55. Yakaitis RW, Blitt CD, Angiulo JP: End-tidal halothane concentration for endotracheal intubation. Anesthesiology 47:386–388, 1977.

56. Friesen RH, Lichtor JL: Cardiovascular depression during halothane anesthesia in infants: Study of three induction techniques. Anesth Analg 61:42–45, 1982.

57. Lerman J, Schmitt-Bantel BI, Gregory GA, et al: Effect of age on the solubility of volatile anesthetics in human tissues. Anesthesiology 65:307–311, 1986.

58. Lerman J, Gregory GA, Willis MM, et al: Age and solubility of volatile anesthetics in blood. Anesthesiology 61:139–143, 1984.

59. Ariffin SA, Whyte JA, Malins AF, et al: Comparison of induction and recovery between sevoflurane and halothane supplementation of anaesthesia in children undergoing outpatient dental extractions. Br J Anaesth 78:157–159, 1997.
2401


60. Lerman J, Davis PJ, Welborn LG, et al: Induction, recovery, and safety characteristics of sevoflurane in children undergoing ambulatory surgery. A comparison with halothane. Anesthesiology 84:1332–1340, 1996.

61. Rieger A, Schroter G, Philippi W, et al: A comparison of sevoflurane with halothane in outpatient adenotomy in children with mild upper respiratory tract infections. J Clin Anesth 8:188–197, 1996.

62. Sigston PE, Jenkins AM, Jackson EA, et al: Rapid inhalation induction in children: 8% sevoflurane compared with 5% halothane. Br J Anaesth 78:362–365, 1997.

63. Naito Y, Tamai S, Shingu K, et al: Comparison between sevoflurane and halothane for paediatric ambulatory anaesthesia. Br J Anaesth 67:387–389, 1991.

64. Piat V, Dubois MC, Johanet S, et al: Induction and recovery characteristics and hemodynamic responses to sevoflurane and halothane in children. Anesth Analg 79:840–844, 1994.

65. Sarner JB, Levine M, Davis PJ, et al: Clinical characteristics of sevoflurane in children. A comparison with halothane. Anesthesiology 82:38–46, 1995.

66. Hallen J, Rawal N, Gupta A: Postoperative recovery following outpatient pediatric myringotomy: A comparison between sevoflurane and halothane. J Clin Anesth 13:161–166, 2001.

67. Cravero J, Surgenor S, Whalen K: Emergence agitation in paediatric patients after sevoflurane anaesthesia and no surgery: A comparison with halothane. Paediatr Anaesth 10:419–424, 2000.

68. Lapin SL, Auden SM, Goldsmith LJ, et al: Effects of sevoflurane anaesthesia on recovery in children: A comparison with halothane. Paediatr Anaesth 9:299–304, 1999.

69. Beskow A, Westrin P: Sevoflurane causes more postoperative agitation in children than does halothane. Acta Anaesthesiol Scand 43:536–541, 1999.

70. Davis PJ, Greenberg JA, Gendelman M, et al: Recovery characteristics of sevoflurane and halothane in preschool-aged children undergoing bilateral myringotomy and pressure equalization tube insertion. Anesth Analg 88:34–38, 1999.

71. Johannesson GP, Floren M, Lindahl SG: Sevolfurane for ENT-surgery in children. A comparison with halothane. Acta Anaesthesiol Scand 39:546–550, 1995.

72. Epstein RH, Mendel HG, Guarnieri KM, et al: Sevoflurane versus halothane for general anesthesia in pediatric patients: A comparative study of vital signs, induction, and emergence. J Clin Anesth 7:237–244, 1995.

73. Kataria B, Epstein R, Bailey A, et al: A comparison of sevoflurane to halothane in paediatric surgical patients: Results of a multicentre international study. Paediatr Anaesth 6:283–292, 1996.

74. Meretoja OA, Taivainen T, Raiha L, et al: Sevoflurane-nitrous oxide or halothane-nitrous oxide for paediatric bronchoscopy and gastroscopy. Br J Anaesth 76:767–771, 1996.

75. Taivainen T, Tiainen P, Meretoja OA, et al: Comparison of the effects of sevoflurane and halothane on the quality of anaesthesia and serum glutathione transferase alpha and fluoride in paediatric patients. Br J Anaesth 73:590–595, 1994.

76. Black A, Sury MR, Hemington L, et al: A comparison of the induction characteristics of sevoflurane and halothane in children. Anaesthesia 51:539–542, 1996.

77. Baum VC, Yemen TA, Baum LD: Immediate 8% sevoflurane induction in children: A comparison with incremental sevoflurane and incremental halothane. Anesth Analg 85:313–316, 1997.

78. Yamakage M, Tamiya K, Horikawa D, et al: Effects of halothane and sevoflurane on the paediatric respiratory pattern. Paediatr Anaesth 4:53–56, 1994.

79. Brown K, Aun C, Stocks J, et al: A comparison of the respiratory effects of sevoflurane and halothane in infants and young children. Anesthesiology 89:86–92, 1998.

80. Morray JP, Geiduschek JM, Ramamoorthy C, et al: Anesthesia-related cardiac arrest in children: Initial findings of the Pediatric Perioperative Cardiac Arrest (POCA) Registry. Anesthesiology 93:6–14, 2000.

81. Kern C, Erb T, Frei FJ: Haemodynamic responses to sevoflurane compared with halothane during inhalational induction in children. Paediatr Anaesth 7:439–444, 1997.

82. Holzman RS, van der Velde ME, Kaus SJ, et al: Sevoflurane depresses myocardial contractility less than halothane during induction of anesthesia in children. Anesthesiology 85:1260–1267, 1996.

83. Wodey E, Pladys P, Copin C, et al: Comparative hemodynamic depression of sevoflurane versus halothane in infants: An echocardiographic study. Anesthesiology 87:795–800, 1997.

84. Wodey E, Copin C, Pladys P, et al: Comparative hemodynamic effects of sevoflurane and halothane at tele-expiratory concentration in intubation of infants [in French]. Ann Fr Anesth Reanim 17:108–112, 1998.

85. Greenspun JC, Hannallah RS, Welborn LG, et al: Comparison of sevoflurane and halothane anesthesia in children undergoing outpatient ear, nose, and throat surgery. J Clin Anesth 7:398–402, 1995.

86. Sury MR, Black A, Hemington L, et al: A comparison of the recovery characteristics of sevoflurane and halothane in children. Anaesthesia 51:543–546, 1996.

87. Fang ZX, Kandel L, Laster MJ, et al: Factors affecting production of compound A from the interaction of sevoflurane with Baralyme and soda lime. Anesth Analg 82:775–781, 1996.

88. Frink EJ Jr, Green WB Jr, Brown EA, et al: Compound A concentrations during sevoflurane anesthesia in children. Anesthesiology 84:566–571, 1996.

89. Jin L, Baillie TA, Davis MR, et al: Nephrotoxicity of sevoflurane compound A [fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether] in rats: Evidence for glutathione and cysteine conjugate formation and the role of renal cysteine conjugate beta-lyase. Biochem Biophys Res Commun 210:498–506, 1995.

90. Frink EJ Jr, Isner RJ, Malan TP Jr, et al: Sevoflurane degradation product concentrations with soda lime during prolonged anesthesia. J Clin Anesth 6:239–242, 1994.

91. Gonsowski CT, Laster MJ, Eger EI 2d, et al: Toxicity of compound A in rats. Effect of a 3-hour administration. Anesthesiology 80:556–565, 1994.

92. Frink EJ Jr, Malan TP, Morgan SE, et al: Quantification of the degradation products of sevoflurane in two CO2 absorbents during low-flow anesthesia in surgical patients. Anesthesiology 77:1064–1069, 1992.

93. Ray DC, Bomont R, Mizushima A, et al: Effect of sevoflurane anaesthesia on plasma concentrations of glutathione S-transferase. Br J Anaesth 77:404–407, 1996.

94. Bito H, Ikeda K: Renal and hepatic function in surgical patients after low-flow sevoflurane or isoflurane anesthesia. Anesth Analg 82:173–176, 1996.

95. Kharasch ED, Thorning D, Garton K, et al: Role of renal cysteine conjugate beta-lyase in the mechanism of compound A nephrotoxicity in rats. Anesthesiology 86:160–171, 1997.

96. Bito H, Ikeda K: Closed-circuit anesthesia with sevoflurane in humans. Effects on renal and hepatic function and concentrations of breakdown products with soda lime in the circuit. Anesthesiology 80:71–76, 1994.

97. Ultane Sevoflurane. 2002. Chicago, Abbott Laboratories. 2002.

98. Kharasch ED, Powers KM, Artru AA: Comparison of Amsorb, soda lime, and Baralyme degradation of volatile anesthetics and formation of carbon monoxide and compound A in swine in vivo. Anesthesiology 96:173–182, 2002.

99. Gentz BA, Malan TP Jr: Renal toxicity with sevoflurane: A storm in a teacup? Drugs 61:2155–2162, 2001.

100. Bouche MP, Versichelen LF, Struys MM, et al: No compound a formation with Superia during minimal-flow sevoflurane anesthesia: A comparison with Sofnolime. Anesth Analg 95:1680–1685, 2002.

101. Knolle E, Heinze G, Gilly H: Small carbon monoxide formation in absorbents does not correlate with small carbon dioxide absorption. Anesth Analg 95:650–655, 2002.

102. Welborn LG, Hannallah RS, Norden JM, et al: Comparison of emergence and recovery characteristics of sevoflurane, desflurane, and halothane in pediatric ambulatory patients. Anesth Analg 83:917–920, 1996.

103. Aono J, Ueda W, Mamiya K, et al: Greater incidence of delirium during recovery from sevoflurane anesthesia in preschool boys. Anesthesiology 87:1298–1300, 1997.
2402


104. Przybylo HJ, Martini DR, Mazurek AJ, et al: Assessing behavior in children emerging from anaesthesia: Can we apply psychiatric diagnostic techniques? Paediatr Anaesth 13:609–616, 2003.

105. Finkel JC, Cohen IT, Hannallah RS, et al: The effect of intranasal fentanyl on the emergence characteristics after sevoflurane anesthesia in children undergoing surgery for bilateral myringotomy tube placement. Anesth Analg 92:1164–1168, 2001.

106. Kulka PJ, Bressem M, Tryba M: Clonidine prevents sevoflurane-induced agitation in children. Anesth Analg 93:335–358, 2001.

107. Adachi M, Ikemoto Y, Kubo K, et al: Seizure-like movements during induction of anaesthesia with sevoflurane. Br J Anaesth 68:214–215, 1992.

108. Holzki J, Kretz FJ: Changing aspects of sevoflurane in paediatric anaesthesia: 1975–99. Paediatr Anaesth 9:283–286, 1999.

109. Constant I, Dubois MC, Piat V, et al: Changes in electroencephalogram and autonomic cardiovascular activity during induction of anesthesia with sevoflurane compared with halothane in children. Anesthesiology 91:1604–1615, 1999.

110. Smiley RM: An overview of induction and emergence characteristics of desflurane in pediatric, adult, and geriatric patients. Anesth Analg 75(Suppl):S38–S44, 1992.

111. Zwass MS, Fisher DM, Welborn LG, et al: Induction and maintenance characteristics of anesthesia with desflurane and nitrous oxide in infants and children. Anesthesiology 76:373–378, 1992.

112. Fisher DM, Robinson S, Brett CM, et al: Comparison of enflurane, halothane, and isoflurane for diagnostic and therapeutic procedures in children with malignancies. Anesthesiology 63:647–650, 1985.

113. McAteer PM, Carter JA, Cooper GM, et al: Comparison of isoflurane and halothane in outpatient paediatric dental anaesthesia. Br J Anaesth 58:390–393, 1986.

114. Kenna JG, Neuberger J, Mieli-Vergani G, et al: Halothane hepatitis in children. Br Med J (Clin Res Ed) 294:1209–1211, 1987.

115. Brown BR Jr, Gandolfi AJ: Adverse effects of volatile anesthetics. Br J Anaesth 59:14–23, 1987.

116. Ogawa M, Doi K, Mitsufuji T, et al: Drug induced hepatitis following sevoflurane anesthesia in a child. Masui 40:1542–1545, 1991.

117. Watanabe K, Hatakenaka S, Ikemune K, et al: A case of suspected liver dysfunction induced by sevoflurane anesthesia. Masui 42:902–905, 1993.

118. Martin JL, Plevak DJ, Flannery KD, et al: Hepatotoxicity after desflurane anesthesia. Anesthesiology 83:1125–1129, 1995.

119. Rolf N, Coté CJ: Persistent cardiac arrhythmias in pediatric patients: Effects of age, expired carbon dioxide values, depth of anesthesia, and airway management. Anesth Analg 73:720–724, 1991.

120. Karl HW, Swedlow DB, Lee KW, et al: Epinephrine-halothane interactions in children. Anesthesiology 58:142–145, 1983.

121. Brandom BW, Brandom RB, Cook DR: Uptake and distribution of halothane in infants: In vivo measurements and computer simulations. Anesth Analg 62:404–410, 1983.

122. Wolf WJ, Neal MB, Peterson MD: The hemodynamic and cardiovascular effects of isoflurane and halothane anesthesia in children. Anesthesiology 64:328–333, 1986.

123. Murray D, Vandewalker G, Matherne GP, et al: Pulsed Doppler and two-dimensional echocardiography: Comparison of halothane and isoflurane on cardiac function in infants and small children. Anesthesiology 67:211–217, 1987.

124. Todd MM, Drummond JC: A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology 60:276–282, 1984.

125. Tanaka S, Tsuchida H, Nakabayashi K, et al: The effects of sevoflurane, isoflurane, halothane, and enflurane on hemodynamic responses during an inhaled induction of anesthesia via a mask in humans. Anesth Analg 82:821–826, 1996.

126. Fang ZX, Eger EI 2d, Laster MJ, et al: Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme. Anesth Analg 80:1187–1193, 1995.

127. Baxter PJ, Kharasch ED: Rehydration of desiccated Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine. Anesthesiology 86:1061–1065, 1997.

128. Higuchi H, Adachi Y, Arimura S, et al: The carbon dioxide absorption capacity of Amsorb is half that of soda lime. Anesth Analg 93:221–225, 2001.

129. Bjorkman S, Gabrielsson J, Quaynor H, et al: Pharmacokinetics of i.v. and rectal methohexitone in children. Br J Anaesth 59:1541–1547, 1987.

130. Liu LMP, Goudsouzian NG, Liu P: Rectal methohexital premedication in children: A dose comparison study. Anesthesiology 53:343–345, 1980.

131. Daniels AL, Coté CJ, Polaner DM: Continuous oxygen saturation monitoring following rectal methohexitone induction in paediatric patients. Can J Anaesth 39:27–30, 1992.

132. Rockoff MA, Goudsouzian NG: Seizures induced by methohexital. Anesthesiology 54:333–335, 1981.

133. Coté CJ, Goudsouzian NG, Liu LM, et al: The dose response of intravenous thiopental for the induction of general anesthesia in unpremedicated children. Anesthesiology 55:703–705, 1981.

134. Brett CM, Fisher DM: Thiopental dose-response relations in unpremedicated infants, children, and adults. Anesth Analg 66:1024–1027, 1987.

135. Westrin P: The induction dose of propofol in infants 1–6 months of age and in children 10–16 years of age. Anesthesiology 74:455–458, 1991.

136. Hannallah RS, Baker SB, Casey W, et al: Propofol: Effective dose and induction characteristics in unpremedicated children. Anesthesiology 74:217–219, 1991.

137. Aun CS, Short SM, Leung DH, et al: Induction dose-response of propofol in unpremedicated children. Br J Anaesth 68:64–67, 1992.

138. Murat I, Billard V, Vernois J, et al: Pharmacokinetics of propofol after a single dose in children aged 1–3 years with minor burns. Comparison of three data analysis approaches. Anesthesiology 84:526–532, 1996.

139. Cameron E, Johnston G, Crofts S, et al: The minimum effective dose of lignocaine to prevent pain due to propofol in children. Anaesthesia 47:604–606, 1992.

140. Vangerven M, Van Hemelrijck J, Wouters P, et al: Light anaesthesia with propofol for paediatric MRI. Anaesthesia 47:706–707, 1992.

141. Short SM, Aun CS: Haemodynamic effects of propofol in children. Anaesthesia 46:783–785, 1991.

142. Watcha MF, Simeon RM, White PF, et al: Effect of propofol on the incidence of postoperative vomiting after strabismus surgery in pediatric outpatients. Anesthesiology 75:204–209, 1991.

143. Hannallah RS, Britton JT, Schafer PG, et al: Propofol anaesthesia in paediatric ambulatory patients: A comparison with thiopentone and halothane. Can J Anaesth 41:12–18, 1994.

144. Cioaca R, Canavea I: Oral transmucosal ketamine: An effective premedication in children. Paediatr Anaesth 6:361–365, 1996.

145. Warner DL, Cabaret J, Velling D: Ketamine plus midazolam, a most effective paediatric oral premedicant. Paediatr Anaesth 5:293–295, 1995.

146. Malinovsky JM, Servin F, Cozian A, et al: Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children. Br J Anaesth 77:203–207, 1996.

147. Weksler N, Ovadia L, Muati G, et al: Nasal ketamine for paediatric premedication. Can J Anaesth 40:119–121, 1993.

148. Carson IW, Moore J, Balmer JP, et al: Laryngeal competence with ketamine and other drugs. Anesthesiology 38:128–133, 1973.

149. De Negri P, Ivani G, Visconti C, et al: How to prolong postoperative analgesia after caudal anaesthesia with ropivacaine in children: S-ketamine versus clonidine. Paediatr Anaesth 11:679–683, 2001.
2403


150. Koinig H, Marhofer P, Krenn CG, et al: Analgesic effects of caudal and intramuscular S(+)-ketamine in children. Anesthesiology 93:976–980, 2000.

Previous Next